Abstract

Silicon nanoparticles are experimentally investigated as a potential hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room temperature for a variety of Si nanoparticles are found to be remarkably long (10^2 to 10^4 s) - roughly consistent with predictions of a core-shell diffusion model - allowing them to be transported, administered and imaged on practical time scales without significant loss of polarization. We also report surface functionalization of Si nanoparticles, comparable to approaches used in other biologically targeted nanoparticle systems.Comment: supporting material here: http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd

    Similar works