15 research outputs found

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Simultaneous Estimation of Mixing Rates and Genetic Drift Under Successive Sampling of Genetic Markers With Application to the Mud Crab (Scylla paramamosain) in Japan

    No full text
    In stock enhancement programs, it is important to assess mixing rates of released individuals in stocks. For this purpose, genetic stock identification has been applied. The allele frequencies in a composite population are expressed as a mixture of the allele frequencies in the natural and released populations. The estimation of mixing rates is possible, under successive sampling from the composite population, on the basis of temporal changes in allele frequencies. The allele frequencies in the natural population may be estimated from those of the composite population in the preceding year. However, it should be noted that these frequencies can vary between generations due to genetic drift. In this article, we develop a new method for simultaneous estimation of mixing rates and genetic drift in a stock enhancement program. Numerical simulation shows that our procedure estimates the mixing rate with little bias. Although the genetic drift is underestimated when the amount of information is small, reduction of the bias is possible by analyzing multiple unlinked loci. The method was applied to real data on mud crab stocking, and the result showed a yearly variation in the mixing rate

    Single nucleotide polymorphism leads to daptomycin resistance causing amino acid substitution-T345I in MprF of clinically isolated MRSA strains.

    No full text
    Daptomycin (DAP) is one of the most potent antibiotics used for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. Due to an increase in its administration for combating MRSA infections, DAP non-susceptible (DAP-NS) MRSA strains have recently been reported in clinical settings. The presence of single nucleotide polymorphisms (SNPs) in the multiple peptide resistance factor (mprF) gene is the most frequently reported cause for the evolution of DAP-NS MRSA strains; however, there are some variations of SNPs that could lead to DAP-NS. In this study, we used two clinical MRSA strains, including DAP susceptible (DAP-S) and DAP-NS, isolated from the same patient at different time points. We introduced T345I SNP to mprF of the DAP-S MRSA strain using the gene exchange method with pIMAY vector. Further, we investigated the phenotype of the mutant strain, including drug susceptibility, cell surface positive charge, and growth speed. The mutant strain exhibited (i) resistance to DAP, (ii) up-regulation of positive surface charge, (iii) slower growth speed, and (iv) thickened cell walls. Hence, the SNP in mprF may have caused an up-regulation in MprF function, with a subsequent increase in positive surface charge. Cumulatively, these results demonstrated that the T345I amino acid substitution in mprF represents one of the primary causes of DAP-NS in MRSA strains

    Newtic1 Is a Component of Globular Structures That Accumulate along the Marginal Band of Erythrocytes in the Limb Blastema of Adult Newt, Cynops pyrrhogaster

    No full text
    In adult newts, when a limb is amputated, a mesenchymal cell mass called the blastema is formed on the stump, where blood vessels filled with premature erythrocytes, named polychromatic normoblasts (PcNobs), elongate. We previously demonstrated that PcNobs in the blastema express an orphan gene, Newtic1, and that they secrete growth factors such as BMP2 and TGFβ1 into the surrounding tissues. However, the relationship between Newtic1 expression and growth factor secretion was not clear since Newtic1 was thought to encode a membrane protein. In this study, we addressed this issue using morphological techniques and found that the Newtic1 protein is a component of globular structures that accumulate at the marginal band in the cytoplasm along the equator of PcNobs. Newtic1-positive (Newtic1(+)) globular structures along the equator were found only in PcNobs with a well-developed marginal band in the blastema. Newtic1(+) globular structures were associated with microtubules and potentially incorporated TGFβ1. Based on these observations, we propose a hypothesis that the Newtic1 protein localizes to the membrane of secretory vesicles that primarily carry TGFβ1 and binds to microtubules, thereby tethering secretory vesicles to microtubules and transporting them to the cell periphery as the marginal band develops
    corecore