1,071 research outputs found
Lifshitz fermionic theories with z=2 anisotropic scaling
We construct fermionic Lagrangians with anisotropic scaling z=2, the natural
counterpart of the usual z=2 Lifshitz field theories for scalar fields. We
analyze the issue of chiral symmetry, construct the Noether axial currents and
discuss the chiral anomaly giving explicit results for two-dimensional case. We
also exploit the connection between detailed balance and the dynamics of
Lifshitz theories to find different z=2 fermionic Lagrangians and construct
their supersymmetric extensions.Comment: Typos corrected, comment adde
Multiscale Analysis in Momentum Space for Quasi-periodic Potential in Dimension Two
We consider a polyharmonic operator H=(-\Delta)^l+V(\x) in dimension two
with , being an integer, and a quasi-periodic potential V(\x).
We prove that the absolutely continuous spectrum of contains a semiaxis and
there is a family of generalized eigenfunctions at every point of this semiaxis
with the following properties. First, the eigenfunctions are close to plane
waves at the high energy region. Second, the isoenergetic
curves in the space of momenta \k corresponding to these eigenfunctions have
a form of slightly distorted circles with holes (Cantor type structure). A new
method of multiscale analysis in the momentum space is developed to prove these
results.Comment: 125 pages, 4 figures. arXiv admin note: incorporates arXiv:1205.118
Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu
Study on Modification of Lignin as Dispersant of Aqueous Graphene Suspension and Corrosion Performance in Waterborne G/Epoxy Coating
Though graphene (G) as an excellent protective material for metal, it can aggravate metal corrosion in other side. The modification of sodium lignin sulfonate was achieved by using itaconic acid and acrylamide,which was proved by UV-vis and Raman spectra. The modified sodium lignin sulfonate (LAI) with more carboxylic groups can be used as the dispersant for aqueous graphene suspension. The commercial graphene can be dispersed uniformly and stability in water via π-π interaction with LAI at high concentration (6 mg/mL),and the LAI-G system can be used as an inhibitor in waterborne epoxy coatings too. Electrochemical impedance spectroscope (EIS) and Tafel polarization curves showed that the corrosion performance of waterborne epoxy system with well-dispersed G (0.5 wt %) was remarkably improved compared with pure epoxy coating
MODELLING THE ELECTRON WITH COSSERAT ELASTICITY
Interactions between a finite number of bodies and the surrounding fluid, in a channel for instance, are investigated theoretically. In the planar model here the bodies or modelled grains are thin solid bodies free to move in a nearly parallel formation within a quasi-inviscid fluid. The investigation involves numerical and analytical studies and comparisons. The three main features that appear are a linear instability about a state of uniform motion, a clashing of the bodies (or of a body with a side wall) within a finite scaled time when nonlinear interaction takes effect, and a continuum-limit description of the body–fluid interaction holding for the case of many bodies
On the Usefulness of Modulation Spaces in Deformation Quantization
We discuss the relevance to deformation quantization of Feichtinger's
modulation spaces, especially of the weighted Sjoestrand classes. These
function spaces are good classes of symbols of pseudo-differential operators
(observables). They have a widespread use in time-frequency analysis and
related topics, but are not very well-known in physics. It turns out that they
are particularly well adapted to the study of the Moyal star-product and of the
star-exponential.Comment: Submitte
Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs
The paper deals with some spectral properties of (mostly infinite) quantum
and combinatorial graphs. Quantum graphs have been intensively studied lately
due to their numerous applications to mesoscopic physics, nanotechnology,
optics, and other areas.
A Schnol type theorem is proven that allows one to detect that a point
belongs to the spectrum when a generalized eigenfunction with an subexponential
growth integral estimate is available. A theorem on spectral gap opening for
``decorated'' quantum graphs is established (its analog is known for the
combinatorial case). It is also shown that if a periodic combinatorial or
quantum graph has a point spectrum, it is generated by compactly supported
eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste
blooper fixe
Hydrodynamic limit for weakly asymmetric simple exclusion processes in crystal lattices
We investigate the hydrodynamic limit for weakly asymmetric simple exclusion
processes in crystal lattices. We construct a suitable scaling limit by using a
discrete harmonic map. As we shall observe, the quasi-linear parabolic equation
in the limit is defined on a flat torus and depends on both the local structure
of the crystal lattice and the discrete harmonic map. We formulate the local
ergodic theorem on the crystal lattice by introducing the notion of local
function bundle, which is a family of local functions on the configuration
space. The ideas and methods are taken from the discrete geometric analysis to
these problems. Results we obtain are extensions of ones by Kipnis, Olla and
Varadhan to crystal lattices.Comment: 41 pages, 7 figure
Hormander class of pseudo-differential operators on compact Lie groups and global hypoellipticity
In this paper we give several global characterisations of the Hormander class
of pseudo-differential operators on compact Lie groups. The result is applied
to give criteria for the ellipticity and the global hypoellipticity of
pseudo-differential operators in terms of their matrix-valued full symbols.
Several examples of the first and second order globally hypoelliptic
differential operators are given. Where the global hypoelliptiticy fails, one
can construct explicit examples based on the analysis of the global symbols.Comment: 20 page
Mixing Quantum and Classical Mechanics
Using a group theoretical approach we derive an equation of motion for a
mixed quantum-classical system. The quantum-classical bracket entering the
equation preserves the Lie algebra structure of quantum and classical
mechanics: The bracket is antisymmetric and satisfies the Jacobi identity, and,
therefore, leads to a natural description of interaction between quantum and
classical degrees of freedom. We apply the formalism to coupled quantum and
classical oscillators and show how various approximations, such as the
mean-field and the multiconfiguration mean-field approaches, can be obtained
from the quantum-classical equation of motion.Comment: 31 pages, LaTeX2
- …
