316 research outputs found

    A single nucleotide polymorphism of the porcine CXCL8 gene is associated with serum CXCL8 level

    No full text
    C-X-C motif chemokine ligand 8 (CXCL8) gene, a crucial cytokine with roles in the immune system, functions in the inflammatory response by promoting the activation and migration of neutrophils. Previous studies have reported that the CXCL8 gene resides within the quantitative trait locus (QTL). In this report, the porcine CXCL8 gene was selected to investigate its effect on serum immune traits. CXCL8 mRNA expression was also detected by quantitative real-time polymerase chain reaction (PCR). A SNP (NC_010450.4:g.69934997T > C, rs81218904) of the CXCL8 gene was identified by direct nucleotide sequencing and the SNP was genotyped by MALDI-TOF MS in the three pig populations, which consisted of 300 piglets distributed in three pig breeds, Landrace (68 piglets), Large White (158 piglets) and Songliao Black (74 piglets). An in-depth analysis indicated that there was a significant correlation between the SNP and the serum CXCL8 level (20 days) (14 days after vaccination) (p < .05). Our results suggest that the CXCL8 gene may be served as a genetic marker with effects on serum CXCL8 level in the pig disease resistance breeding.Highlights Genomic variant identification and tissues expression analysis of porcine CXCL8 gene. The SNP in porcine CXCL8 gene was significantly associated with serum CXCL8 level in three pig populations. SNP genotyping and association analysis results provided significant evidence for association on serum cytokine trait of porcine CXCL8 gene

    Non-Transition-Metal Catalytic System for N<sub>2</sub> Reduction to NH<sub>3</sub>: A Density Functional Theory Study of Al-Doped Graphene

    No full text
    The prevalent catalysts for natural and artificial N<sub>2</sub> fixation are known to hinge upon transition-metal (TM) elements. Herein, we demonstrate by density functional theory that Al-doped graphene is a potential non-TM catalyst to convert N<sub>2</sub> to NH<sub>3</sub> in the presence of relatively mild proton/electron sources. In the integrated structure of the catalyst, the Al atom serves as a binding site and catalytic center while the graphene framework serves as an electron buffer during the successive proton/electron additions to N<sub>2</sub> and its various downstream N<sub><i>x</i></sub>H<sub><i>y</i></sub> intermediates. The initial hydrogenation of N<sub>2</sub> can readily take place via an internal H-transfer process with the assistance of a Li<sup>+</sup> ion as an additive. In view of the recurrence of H transfer in the first step of N<sub>2</sub> reduction observed in biological nitrogenases and other synthetic catalysts, this finding highlights the significance of heteroatom-assisted H transfer in the design of synthetic catalysts for N<sub>2</sub> fixation

    Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity

    No full text
    Cytarabine arabinoside (ara-C) is an antimetabolite used to treat hematologic malignancies. Resistance is a common reason for treatment failure with adverse side effects contributing to morbidity and mortality. Identification of genetic factors important in susceptibility to ara-C cytotoxicity may allow for individualization of treatment. We used an unbiased whole-genome approach using lymphoblastoid cell lines derived from persons of European (CEU) or African (YRI) ancestry to identify these genetic factors. We interrogated more than 2 million single nucleotide polymorphisms (SNPs) for association with susceptibility to ara-C and narrowed our focus by concentrating on SNPs that affected gene expression. We identified a unique pharmacogenetic signature consisting of 4 SNPs explaining 51% of the variability in sensitivity to ara-C among the CEU and 5 SNPs explaining 58% of the variation among the YRI. Population-specific signatures were secondary to either (1) polymorphic SNPs in one population but monomorphic in the other, or (2) significant associations of SNPs with cytotoxicity or gene expression in one population but not the other. We validated the gene expression-cytotoxicity relationship for a subset of genes in a separate group of lymphoblastoid cell lines. These unique genetic signatures comprise novel genes that can now be studied further in functional studies

    Search for Bc+→π+ÎŒ+Ό−B_c^+\to\pi^+\mu^+\mu^- decays and measurement of the branching fraction ratio B(Bc+→ψ(2S)π+)/B(Bc+→J/ψπ+){\cal B}(B_c^+\to\psi(2S)\pi^+)/{\cal B}(B_c^+\to J/\psi \pi^+)

    No full text
    International audienceThe first search for nonresonant Bc+→π+ÎŒ+Ό−B_c^+\to\pi^+\mu^+\mu^- decays is reported. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb−1^{-1}. No evidence for an excess of signal events over background is observed and an upper limit is set on the branching fraction ratio B(Bc+→π+ÎŒ+Ό−)/B(Bc+→J/ψπ+)<2.1×10−4{\cal B}(B_c^+\to\pi^+\mu^+\mu^-)/{\cal B}(B_c^+\to J/\psi \pi^+) < 2.1\times 10^{-4} at 90%90\% confidence level. Additionally, an updated measurement of the ratio of the Bc+→ψ(2S)π+B_c^+\to\psi(2S)\pi^+ and Bc+→J/ψπ+B_c^+\to J/\psi \pi^+ branching fractions is reported. The ratio B(Bc+→ψ(2S)π+)/B(Bc+→J/ψπ+){\cal B}(B_c^+\to\psi(2S)\pi^+)/{\cal B}(B_c^+\to J/\psi \pi^+) is measured to be 0.254±0.018±0.003±0.0050.254\pm 0.018 \pm 0.003 \pm 0.005, where the first uncertainty is statistical, the second systematic, and the third is due to the uncertainties on the branching fractions of the leptonic J/ψJ/\psi and ψ(2S)\psi(2S) decays. This measurement is the most precise to date and is consistent with previous LHCb results

    Improved measurement of CPCP violation parameters in Bs0→J/ψK+K−B_s^0\to J/\psi K^+K^- decays in the vicinity of the ϕ(1020)\phi(1020) resonance

    No full text
    The decay-time-dependent CPCP asymmetry in Bs0→J/ψ(→Ό+Ό−)K+K−B_s^0\to J/\psi(\to \mu^+\mu^-) K^+ K^- decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6fb−16 {\rm fb}^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B_s^0 signal decays with an invariant K+K−K^+ K^- mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B_s^0-B‟s0\overline{B}_s^0 system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B_s^0 and B0B^0 meson decay widths, Γs−Γd\Gamma_s-\Gamma_d. The values obtained are ϕs=−0.039±0.022±0.006\phi_s = -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024 ps−1\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ~{\rm ps}^{-1} and Γs−Γd=−0.056 − 0.0015 + 0.0013±0.0014 ps−1\Gamma_s-\Gamma_d = -0.056^{\:+\:0.0013}_{\:-\:0.0015} \pm 0.0014 ~{\rm ps}^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+K−K^+K^- system and shows no evidence for polarization dependence.The decay-time-dependent CPCP asymmetry in Bs0→J/ψ(→Ό+Ό−)K+K−B^0_s\to J/\psi(\to \mu^{+}\mu^{-}) K^{+}K^{-} decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb−1fb^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B^{0}_{s} signal decays with an invariant K+K−K^{+}K^{-} mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B^0_s-Bˉs0\bar{B}^0_s system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B^0_s and B0B^0 meson decay widths, Γs−Γd\Gamma_s-\Gamma_d. The values obtained are ϕs= −0.039±0.022±0.006\phi_s = \ -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ps−1^{-1} and Γs−Γd=−0.0056−0.0015+0.0013±0.0014\Gamma_s-\Gamma_d = -0.0056 ^{+ 0.0013}_{-0.0015} \pm 0.0014 ps−1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+K−K^{+}K^{-} system and shows no evidence for polarization dependence

    Improved measurement of CPCP violation parameters in Bs0→J/ψK+K−B^0_s\to J/\psi K^{+}K^{-} decays in the vicinity of the ϕ(1020)\phi(1020) resonance

    No full text
    International audienceThe decay-time-dependent CPCP asymmetry in Bs0→J/ψ(→Ό+Ό−)K+K−B^0_s\to J/\psi(\to \mu^{+}\mu^{-}) K^{+}K^{-} decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb−1fb^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B^{0}_{s} signal decays with an invariant K+K−K^{+}K^{-} mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B^0_s-Bˉs0\bar{B}^0_s system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B^0_s and B0B^0 meson decay widths, Γs−Γd\Gamma_s-\Gamma_d. The values obtained are ϕs= −0.039±0.022±0.006\phi_s = \ -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ps−1^{-1} and Γs−Γd=−0.0056−0.0015+0.0013±0.0014\Gamma_s-\Gamma_d = -0.0056 ^{+ 0.0013}_{-0.0015} \pm 0.0014 ps−1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+K−K^{+}K^{-} system and shows no evidence for polarization dependence

    Improved measurement of CPCP violation parameters in Bs0→J/ψK+K−B^0_s\to J/\psi K^{+}K^{-} decays in the vicinity of the ϕ(1020)\phi(1020) resonance

    No full text
    International audienceThe decay-time-dependent CPCP asymmetry in Bs0→J/ψ(→Ό+Ό−)K+K−B^0_s\to J/\psi(\to \mu^{+}\mu^{-}) K^{+}K^{-} decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb−1fb^{-1}, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 Bs0B^{0}_{s} signal decays with an invariant K+K−K^{+}K^{-} mass in the vicinity of the ϕ(1020)\phi(1020) resonance, the CPCP-violating phase ϕs\phi_s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the Bs0B^0_s-Bˉs0\bar{B}^0_s system, ΔΓs\Delta\Gamma_s, and the difference of the average Bs0B^0_s and B0B^0 meson decay widths, Γs−Γd\Gamma_s-\Gamma_d. The values obtained are ϕs= −0.039±0.022±0.006\phi_s = \ -0.039 \pm 0.022 \pm 0.006 rad, ΔΓs=0.0845±0.0044±0.0024\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 ps−1^{-1} and Γs−Γd=−0.0056−0.0015+0.0013±0.0014\Gamma_s-\Gamma_d = -0.0056 ^{+ 0.0013}_{-0.0015} \pm 0.0014 ps−1^{-1}, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase ϕs\phi_s is also measured independently for each polarization state of the K+K−K^{+}K^{-} system and shows no evidence for polarization dependence

    A model-independent measurement of the CKM angle Îł\gamma in partially reconstructed B±→D∗h±B^{\pm} \to D^{*} h^{\pm} decays with D→KS0h+h−D \to K_{S}^{0} h^{+}h^{-}(h=π,K)(h=\pi, K)

    No full text
    International audienceA measurement of C ⁣PC\!P-violating observables in B±→D∗K±B^{\pm} \to D^{*} K^{\pm} and B±→D∗π±B^{\pm} \to D^{*} \pi^{\pm} decays is made where the photon or neutral pion from the D∗→DÎłD^{*} \to D\gamma or D∗→Dπ0D^{*} \to D\pi^{0} decay is not reconstructed. The DD meson is reconstructed in the self-conjugate decay modes, D→KS0π+π−D \to K_{S}^{0} \pi^{+} \pi^{-} or D→KS0K+K−D \to K_{S}^{0} K^{+} K^{-}. The distribution of signal yields in the DD decay phase space is analysed in a model-independent way. The measurement uses a data sample collected in proton-proton collisions at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of approximately 9 fb−1^{-1}. The B±→D∗K±B^{\pm} \to D^{*} K^{\pm} and B±→D∗π±B^{\pm} \to D^{*} \pi^{\pm}C ⁣PC\!P-violating observables are interpreted in terms of hadronic parameters and the CKM angle Îł\gamma, resulting in a measurement of Îł=(92−17+21)∘\gamma = (92^{+21}_{-17})^{\circ}. The total uncertainty includes the statistical and systematic uncertainties, and the uncertainty due to external strong-phase inputs
    • 

    corecore