68 research outputs found

    Visionary Management: Footstone of Sustained Firm Growth

    Get PDF
    As an important discipline of the learning organization, vision provides guidance about what core to preserve and what future to stimulate progress toward. It had been proved by the experiences of foreign companies’ successful practice that visionary management was an actually new managerial philosophy and tool after the corporation reengineering theory to support sustained firm growth. It should be worthy our stated-owned enterprises and short-life’s to learn and practice

    Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment

    Get PDF
    Spinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS2) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS2@PEG (MoS2 = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS2@PEG in vitro and demonstrate that ET-loading MoS2@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS2@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS2@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS2@PEG and promising utility of MoS2 nanomaterial-mediated drug delivery

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Flexible antibacterial film deposited with polythiophene-porphyrin composite

    No full text
    A flexible and transparent anti-bacterial film is prepared by depositing polyterthiophene incorporating porphyrin onto the poly(ethylene terephthalate) sheet by a simple and rapid oxidation polymerization method. The film can generate singlet oxygen by FRET from polyterthiophene to porphyrin to effectively kill the adsorbed bacteria under white light

    On the Resistance-Harary Index of Graphs Given Cut Edges

    No full text
    Graphs are often used to describe the structure of compounds and drugs. Each vertex in the graph represents the molecule and each edge represents the bond between the atoms. The resistance distance between any two vertices is equal to the resistance between the two points of an electrical network. The Resistance-Harary index is defined as the sum of reciprocals of resistance distances between all pairs of vertices. In this paper, the extremal graphs with maximum Resistance-Harary index are determined in connected graphs with given vertices and cut edges

    Characterization and Catalytic-Site-Analysis of an Aldo-Keto Reductase with Excellent Solvent Tolerance

    No full text
    Aldo-keto reductases (AKRs) mediated stereoselective reduction of prochiral carbonyl compounds is an efficient way of preparing single enantiomers of chiral alcohols due to their high chemo-, enantio-, and regio-selectivity. To date, the application of AKRs in the asymmetric synthesis of chiral alcohols has been limited, due to the challenges of cloning and purifying. In this work, the aldo-keto reductase (AKR3-2-9) from Bacillus sp. was obtained, purified and proved to be NADPH-dependent. It exhibits good bioactivity and stability at 37 °C, pH 6.0. AKR3-2-9 is catalytically active on 11 pairs of substrates such as 3-methylcyclohexanone and methyl pyruvate, among which it showed the highest catalytic activity for acetylacetone. In addition, AKR3-2-9 was able to be resistant to five common organic solvents such as methanol and ethanol, it retained high catalytic activity even in a reaction system containing 10% v/v organic solvent for 6 h, which indicates its broad substrate spectrum and exceptional organic solvent tolerance. Furthermore, its three-dimensional structure was constructed and catalytic-site-analysis of the enzyme was conducted. Notably, it was capable of catalyzing the reaction of the key intermediates of duloxetine. The extensive substrate spectrum and predominant organic solvents resistance makes AK3-2-9 a promising enzyme which can be potentially applied in medicine synthesis

    Polarity Conversion of Conjugated Polymer for Lysosome Escaping

    No full text
    Polymers are mostly trapped in lysosomes when they enter cells and are then expelled, otherwise they were designed to be degradable to small molecules or to sabotage lysosomes. Therefore, they have reached the limit of the unique functionalities as a whole. Different from other escaping strategies, we introduced the polarity exchanging approach to rigid-backboned conjugated polymer for controlled penetrating through endosome or lysosome membranes. With the aid of pH-sensitive cleavage of water-soluble side chain, the rigid conjugated polymer turns highly hydrophobic after it is internalized into lysosomes and then accomplishes escaping. Thus, polarity exchange of CPs could become a new strategy for their application on chemotherapeutics
    corecore