290 research outputs found

    Haemato-biochemical study of captive leopards

    Get PDF
    The analysis of blood constituents and their biochemicals are one of the important tools for screening of health status. The study to obtain the normal blood profile of captive leopards was planned. The haemato-biochemicals of 14 apparently healthy leopards were studied of different zoos and captivity in Madhya Pradesh. The range and means (with one standard deviation) for the haematological values viz. total erythrocyte count, haemoglobin, pack cell volume with noticeable erythrocyte sedimentation rate with absence of reticulocytes whereas, total leukocyte count and differential leukocyte counts revealed large granulated eosinophils and predominance of neutrophils over lymphocytes were recorded. The blood biochemical constituents showed the wide range of liver and kidney function enzymes indicates the high tolerance power and adaptability of leopards to sustenance even in adverse conditions

    Characterizing Spectral Channels of Visible Emission Line Coronagraph of Aditya-L1

    Get PDF
    Aditya-L1 is India’s first solar mission with the Visible Emission Line Coronagraph (VELC), which consists of three spectral channels taking high-resolution spectroscopic observations of the inner corona up to 1.5Β Rʘ at 5,303, 7,892, and 10,747Β Γ…. In this work, we present a strategy for the slit width optimization of the VELC using synthetic line profiles by taking into account the instrument characteristics and coronal conditions for log(T) varying from 6 to 6.5. The synthetic profiles are convolved with simulated instrumental scattered light and noise to estimate the signal-to-noise ratio (SNR), which will be crucial to designing the future observation plans. We find that the optimum slit width for VELC turns out to be 50Β ΞΌm, providing sufficient SNR for observations in different solar conditions. We also analyzed the effect of plasma temperature on the SNR at different heights in the VELC field of view for the optimized slit width. We also studied the expected effect of the presence of a CME on the spectral channel observations. This analysis will help to plan the scientific observations of VELC in different solar conditions

    CDK targets Sae2 to control DNA-end resection and homologous recombination

    Get PDF
    DNA double-strand breaks (DSBs) are repaired by two principal mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR)1. HR is the most accurate DSB repair mechanism but is generally restricted to the S and G2 phases of the cell cycle, when DNA has been replicated and a sister chromatid is available as a repair template2-5. By contrast, NHEJ operates throughout the cell cycle but assumes most importance in G1 (refs 4​, ​6). The choice between repair pathways is governed by cyclin-dependent protein kinases (CDKs)2,3,5,7, with a major site of control being at the level of DSB resection, an event that is necessary for HR but not NHEJ, and which takes place most effectively in S and G2 (refs 2​, ​5). Here we establish that cell-cycle control of DSB resection in Saccharomyces cerevisiae results from the phosphorylation by CDK of an evolutionarily conserved motif in the Sae2 protein. We show that mutating Ser 267 of Sae2 to a non-phosphorylatable residue causes phenotypes comparable to those of a sae2Ξ” null mutant, including hypersensitivity to camptothecin, defective sporulation, reduced hairpin-induced recombination, severely impaired DNA-end processing and faulty assembly and disassembly of HR factors. Furthermore, a Sae2 mutation that mimics constitutive Ser 267 phosphorylation complements these phenotypes and overcomes the necessity of CDK activity for DSB resection. The Sae2 mutations also cause cell-cycle-stage specific hypersensitivity to DNA damage and affect the balance between HR and NHEJ. These findings therefore provide a mechanistic basis for cell-cycle control of DSB repair and highlight the importance of regulating DSB resection

    Chromosome Tips Damaged in Anaphase Inhibit Cytokinesis

    Get PDF
    Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit

    A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

    Get PDF
    We have identified a novel gene in a genome-wide, double-strand break DNA repair RNAi screen and show that is involved in the neurological disease hereditary spastic paraplegia

    Disparate Impact of Butyroyloxymethyl Diethylphosphate (AN-7), a Histone Deacetylase Inhibitor, and Doxorubicin in Mice Bearing a Mammary Tumor

    Get PDF
    The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of Ξ³H2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in Ξ³H2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in Ξ³H2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection

    RAD50 Is Required for Efficient Initiation of Resection and Recombinational Repair at Random, Ξ³-Induced Double-Strand Break Ends

    Get PDF
    Resection of DNA double-strand break (DSB) ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random β€œdirty-ended” DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE). We utilized this β€œPFGE-shift” to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after Ξ³-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1–2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent

    Chk2 and p53 Are Haploinsufficient with Dependent and Independent Functions to Eliminate Cells after Telomere Loss

    Get PDF
    The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues
    • …
    corecore