5 research outputs found

    Automatic detection of paroxysmal atrial fibrillation

    No full text
    The purpose of this chapter is to provide a tutorial level introduction to (a) the physiology and clinical background of paroxysmal (intermittent) atrial fibrillation (PAF), and (b) methods for detection of patterns consistent with AF using electrocardiogram (ECG) processing. The document assumes that the reader is familiar with basic signal processing concepts, but assumes no prior knowledge of AF or pattern classification. A practical implementation of an automatic AF detector is presented; a supervised linear discriminant classifier is used to estimate the likelihood of a block of inter-heartbeat intervals being PAF, with accuracies of 92%, 94%, 100% and 100% when the method was used to process the publically available Physionet (Goldberger et al., 2000) signal databases MITDB, AFDB, NSRDB and NSR2DB respectively

    Real time breathing rate estimation from a non contact biosensor

    No full text
    An automated real time method for detecting human breathing rate from a non contact biosensor is considered in this paper. The method has low computational and RAM requirements making it well-suited to real-time, low power implementation on a microcontroller. Time and frequency domain methods are used to separate a 15s block of data into movement, breathing or absent states; a breathing rate estimate is then calculated. On a 1s basis, 96% of breaths were scored within 1 breath per minute of expert scored respiratory inductance plethysmography, while 99% of breaths were scored within 2 breaths per minute. When averaged over 30s, as is used in this respiration monitoring system, over 99% of breaths are within 1 breath per minute of the expert score

    A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor

    No full text
    Nocturnal respiration rate parameters were collected from 20 COPD subjects over an 8 week period, to determine if changes in respiration rate were associated with exacerbations of COPD. These subjects were primarily GOLD Class 2 to 4, and had been recently discharged from hospital following a recent exacerbation. The respiration rates were collected using a non-contact radio-frequency bio-motion sensor which senses respiratory effort and body movement using a short-range radio-frequency sensor. An adaptive notch filter was applied to the measured signal to determine respiratory rate over rolling 15 s segments. The accuracy of the algorithm was initially verified using ten manually-scored 15 min segments of respiration extracted from overnight parallelograms. The calculated respiration rates were within 1 breath min−1 for >98% of the estimates. For the 20 subjects monitored, 11 experienced one or more subsequent exacerbation of COPD (ECOPD) events during the 8 week monitoring period (19 events total). Analysis of the data revealed a significant increase in nocturnal respiration rate (e.g. >2 breath min−1) prior to many ECOPD events. Using a simple classifier of a change of 1 breath min−1 in the mode of the nocturnal respiration rate, a predictive rule showed a sensitivity of 63% and specificity of 85% for predicting an exacerbation within a 5 d window. We conclude that it is possible to collect respiration rates reliably in the home environment, and that the respiration rate may be a potential indicator of change in clinical status

    Aspergillus osteomyelitis: Epidemiology, clinical manifestations, management, and outcome

    No full text
    corecore