9 research outputs found

    Size dependent nanomechanics of coil spring shaped polymer nanowires

    Get PDF
    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials

    3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography

    No full text
    We present a method to develop single-wall carbon nanotube (SWCNT)/polymer composites into arbitrary three-dimensional micro/nano structures. Our approach, based on two-photon polymerization lithography, allows one to fabricate three-dimensional SWCNT/polymer composites with a minimum spatial resolution of a few hundreds nm. A near-infrared femtosecond pulsed laser beam was focused onto a SWCNT-dispersed photo resin, and the laser light solidified a nanometric volume of the resin. The focus spot was three-dimensionally scanned, resulting in the fabrication of arbitrary shapes of SWCNT/polymer composites. SWCNTs were uniformly distributed throughout the whole structures, even in a few hundreds nm thick nanowires. Furthermore, we also found an intriguing phenomenon that SWCNTs were self-aligned in polymer nanostructures, promising improvements in mechanical and electrical properties. Our method has great potential to open up a wide range of applications such as micro- and nanoelectromechanical systems, micro/nano actuators, sensors, and photonics devices based on CNTs.the National Science Foundation Grant No. OISE-096840

    Macroscopic Ensembles of Aligned Carbon Nanotubes in Bubble Imprints Studied by Polarized Raman Microscopy

    Get PDF
    We study the alignment of single-wall carbon nanotubes (SWCNTs) in bubble imprints through polarized Raman microscopy. A hemispherical bubble containing SWCNTs is pressed against a glass substrate, resulting in an imprint of the bubble membrane with a coffee ring on the substrate. We find that macroscopic ensembles of aligned SWCNTs are obtained in the imprints, in which there are three patterns of orientations: (i) azimuthal alignment on the coffee ring, (ii) radial alignment at the edge of the membrane, and (iii) random orientation at the center of the membrane. We also find that the alignment of SWCNTs in the imprints can be manipulated by spinning bubbles. The orientation of SWCNTs on the coffee ring is directed radially, which is orthogonal to the case of unspun bubbles. This approach enables one to align SWCNTs in large quantities and in a short time, potentially opening up a wide range of CNT-based electronic and optical applications

    Drift Suppression of Solution-Gated Graphene Field-Effect Transistors by Cation Doping for Sensing Platforms

    No full text
    Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the transfer curve often drifts in an electrolyte solution during measurements, making it difficult to accurately estimate the analyte concentration. One possible reason for this drift is that p-doping of GFETs is gradually countered by cations in the solution, because the cations can permeate into the polymer residue and/or between graphene and SiO2 substrates. Therefore, we propose doping sufficient cations to counter p-doping of GFETs prior to the measurements. For the pre-treatment, GFETs were immersed in a 15 mM sodium chloride aqueous solution for 25 h. The pretreated GFETs showed that the charge neutrality point (CNP) drifted by less than 3 mV during 1 h of measurement in a phosphate buffer, while the non-treated GFETs showed that the CNP was severely drifted by approximately 50 mV, demonstrating a 96% reduction of the drift by the pre-treatment. X-ray photoelectron spectroscopy analysis revealed the accumulation of sodium ions in the GFETs through pre-treatment. Our method is useful for suppressing drift, thus allowing accurate estimation of the target analyte concentration

    Graphene as an Imaging Platform of Charged Molecules

    No full text
    Graphene, a single atom layer of carbon atoms, provides a two-dimensional platform with an extremely high sensitivity to charges due to its unique band structure and high surface-to-volume ratio. Graphene field-effect transistor (G-FET) biosensors have, indeed, demonstrated a detection limit of subnanomolar or even subpicomolar. However, in G-FET, signal is averaged throughout the whole channel, so there remains a need to visualize the spatial distribution of target molecules on a single G-FET, to provide further insight into target molecules and/or biological functions. Here, we made use of graphene as an imaging platform of charged molecules via Raman microscopy. Positively (or negatively) charged microbeads with a diameter of 1 ÎŒm were dispersed in a buffer solution and were attached on graphene. We found out that Raman peaks of graphene, where positively (or negatively) charged beads contacted, were up-shifted (or down-shifted) significantly, indicating that the carrier density in the graphene was locally modulated by the charged beads and the charge state of the beads was represented by the peak-shift direction. From the peak shift, the change in the carrier density was calculated to be +1.4 × 10<sup>12</sup> cm<sup>–2</sup> (or −1.0 × 10<sup>12</sup> cm<sup>–2</sup>). By taking Raman peak-shift images, we visualized distribution of charged molecules on graphene with a spatial resolution below 1 ÎŒm. The technique described here overcomes the limitation of spatial resolution of G-FET and provides a new route to graphene-based chemical and biosensors

    Drift Suppression of Solution-Gated Graphene Field-Effect Transistors by Cation Doping for Sensing Platforms

    No full text
    Solution-gated graphene field-effect transistors (SG-GFETs) provide an ideal platform for sensing biomolecules owing to their high electron/hole mobilities and 2D nature. However, the transfer curve often drifts in an electrolyte solution during measurements, making it difficult to accurately estimate the analyte concentration. One possible reason for this drift is that p-doping of GFETs is gradually countered by cations in the solution, because the cations can permeate into the polymer residue and/or between graphene and SiO2 substrates. Therefore, we propose doping sufficient cations to counter p-doping of GFETs prior to the measurements. For the pre-treatment, GFETs were immersed in a 15 mM sodium chloride aqueous solution for 25 h. The pretreated GFETs showed that the charge neutrality point (CNP) drifted by less than 3 mV during 1 h of measurement in a phosphate buffer, while the non-treated GFETs showed that the CNP was severely drifted by approximately 50 mV, demonstrating a 96% reduction of the drift by the pre-treatment. X-ray photoelectron spectroscopy analysis revealed the accumulation of sodium ions in the GFETs through pre-treatment. Our method is useful for suppressing drift, thus allowing accurate estimation of the target analyte concentration

    Biosensing with Surface Charge Modulated Graphene Field-Effect Transistors Beyond Nonlinear Electrolytic Screening

    No full text
    In field-effect transistor (FET) biosensors, charge screening in electrolyte solutions limits sensitivity, thereby restricting the applicability of FET sensors. This is particularly pronounced in graphene FET (GFET) biosensors, where the bare graphene surface possesses a strongly negative charge, which impedes the high sensitivity of GFETs owing to nonlinear electrolytic screening at the interfaces between graphene and liquid. In this study, we counteracted the negative surface charge of graphene by decorating positively charged compounds and demonstrated the sensing of C-reactive protein (CRP) with surface-charge-modulated GFETs (SCM-GFETs). We integrated multiple SCM-GFETs with anti-CRP antibodies and non-functionalized GFETs into a chip, and measured differentials to eliminate background changes to improve measurement reliability. The FET response corresponded to the fluorescence images, which visualized the specific adsorption of CRP. The estimated dissociation constant was consistent with previously reported values; this supports the conclusion that the results are attributed to specific adsorption. Conversely, the signal in GFETs without decoration was obscured by noise because of nonlinear electrolytic screening, further emphasizing the significance of surface-charge modulation. The limit of detection (LOD) of the system was determined to be 2.9 nM. This value has the potential to be improved through further optimization of the surface charges to align with specific applications. Our devices effectively circumvent nonlinear electrolytic screening, opening the door for further advancements in GFET biosensor technology

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore