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We study the alignment of single-wall carbon nanotubes (SWCNTSs) in bubble imprints through polarized Raman microscopy. A
hemispherical bubble containing SWCNTs is pressed against a glass substrate, resulting in an imprint of the bubble membrane with
a coffee ring on the substrate. We find that macroscopic ensembles of aligned SWCNTSs are obtained in the imprints, in which there
are three patterns of orientations: (i) azimuthal alignment on the coffee ring, (ii) radial alignment at the edge of the membrane,
and (iii) random orientation at the center of the membrane. We also find that the alignment of SWCNTs in the imprints can be
manipulated by spinning bubbles. The orientation of SWCNTs on the coffee ring is directed radially, which is orthogonal to the
case of unspun bubbles. This approach enables one to align SWCNTs in large quantities and in a short time, potentially opening up

a wide range of CNT-based electronic and optical applications.

1. Introduction

Single-wall carbon nanotubes (SWCNTs) consist of one-
dimensional (1D) graphitic crystalline nanostructures of
a rolled-up single layer of graphene formed into hollow
cylinder shapes, of which the typical diameter and length are
~Inm and ~1000 nm, respectively. SWCNTs have generated
great interest due to their extremely high aspect ratios as
well as their remarkable mechanical [1], electrical [2], thermal
[3], and optical [4] properties. The unique 1D nanostructure
leads to the anisotropic properties of SWCNTSs, and thus
macroscopically aligned SWCNT ensembles can harness
these anisotropic properties. The aligned SWCNTs have
indeed opened up a wide range of applications such as
photodetectors [5, 6], polarizers [7, 8], actuators [9], and
nanocomposites [10, 11].

The macroscopic alignment of SWCNTs has been
achieved through in situ growth [12, 13], mechanical

stretching [7, 14], and electric [15] or magnetic [16] field
induced alignment methods. Some progress has also been
made recently with the macroscopic alignment of SWCNTs
by using bubbles [17, 18]. This method enables one to deposit
aligned SWCNTs on large areas and to transfer SWCNTs to
different substrates such as glass substrate or flexible plastic
sheets.

Here, we also make use of bubbles and investigate
the alignment of SWCNTs in bubble imprints. Polarized
Raman microscopy was employed to analyze the alignment
of SWCNTs. There are several advantages of polarized Raman
microscopy over molecular orientation analysis. One of the
advantages is that the distribution of SWCNTs, exclud-
ing other molecules such as surfactant molecules, can be
analyzed in this method. Further, Raman analysis enables
one to analyze a relatively large area in a short time,
compared to other molecular orientation analysis methods
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FIGURE 1: (a) A photograph of SWCNT-dispersed suspension.

such as AFM. Polarized Raman microscopy can also attain
a three-dimensional analysis of molecular orientation [19].
In addition, polarized Raman microscopy makes it possible
to analyze molecular orientations inside structures besides
sample surface [20, 21]. We thus make use of polarized Raman
microscopy for investigating the alignment of SWCNTs
in bubble imprints. Furthermore, we also found that the
alignment of SWCNTs in the imprints can be manipulated
by spinning bubbles during the substrate transfer process.

2. Experimental

2.1. Materials. SWCNTs, synthesized by the high-pressure
carbon monoxide (HiPco) process at Rice University, were
used in this study. The average diameter is 0.97 nm and
the length is about 500-700 nm. 1wt% of SWCNTs was
loaded into water with 0.3 wt% of surfactant of sodium dode-
cylbenzenesulfonate (Aldrich). SWCNTs were subsequently
dispersed by ultrasonication for 1 hour. Large aggregated
SWCNTs were removed by ultracentrifugation for 10 min at
173,600 g.

2.2. The Alignment Study through Polarized Raman Micros-
copy. Polarized Raman microscopy experiments were car-
ried out using a Raman microscope (Raman-11, Nanopho-
ton Corp.) for investigating the orientation direction and
degree of alignment of SWCNTs in the bubble imprint.
The excitation laser beam, with a wavelength of 785nm,
was linearly polarized after passing through a polarizer and
focused onto bubble imprints through an objective lens (100x,
NA 0.9, Nikon). The polarization direction was rotated with
a half-wave plate placed between the objective lens and the
polarizer. Raman scattering was collected with the same
objective lens, and the polarization was rotated to be the same
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(b) An absorption spectrum of the SWCNT-dispersed suspension.

direction as that of the incident light after passing through
the half-wave plate. The laser power and exposure time were
4.32mW and 5, respectively. The polarized Raman intensity
depends on the polarization angle, 0, of the Raman excitation
laser beam, and the angular dependence of the Raman peak
intensity, I(0), is fitted with the following function [22, 23]:
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where S, and S, are the fitting parameters. S; and S, are the
average values of the Legendre polynomials of degrees 2 and
4 and also express the second- and fourth-order orientation
parameters, respectively. Both S; and S, equal 1 for perfect
alignment and 0 for complete random orientations. Since S,
is also known as the nematic order parameter S, we use S (or
S,) to represent the strength of the alignment of SWCNTs in
this study.

3. Results

Figure 1(a) shows a photo of the SWCNT-suspension pre-
pared in this study. To see the dispersion quality of SWCNTs
in the solution, we took an absorption spectrum (Figure 1(b)).
There are several sharp absorption peaks attributed to inter-
band excitonic transitions in SWCNTs. The appearance of
these intrinsic absorption peaks indicates that SWCNTs are
well dispersed in the solution.

Bubbles were prepared from the suspension, as illustrated
in Figure 2(a). A hemispherical bubble was created at room
temperature on a glass substrate (Matsunami micro cover
glass, 22 x 40 mm) using a plastic pipette (Figure 2(b)). The
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FIGURE 2: (a) Procedure of bubble printing to a glass substrate. (b) A photograph of a hemispherical bubble containing SWCNTs on a glass
substrate. (c) A photograph of a bubble under compression. (d) A photograph of a bubble imprint. (e) A bright field image of a bubble imprint.

typical diameter was around 15-20 mm, and the thickness of
the bubble membrane was around 1 ym. The membrane was
composed of three layers: the inner and outer surfaces of these
bubbles were made up of surfactant, and the middle layer was
composed of SWCNTs and water [18]. The bubble was pressed
against another glass substrate (Matsunami micro cover
glass, 22 x 40 mm) until the bubble popped (Figure 2(c)).
The typical lifetime of bubbles was 5-20s. The bubble was
imprinted on to the flat surface with a coffee ring with a width
of ~100 um (Figures 2(d) and 2(e)). The obtained membrane
imprint was used for testing.

Figures 3(a) and 3(b) present a typical Raman spectrum
taken from a bubble imprint. The result shows multiple peaks
in the range of 200 to 270 cm ™' and a pronounced peak at
1585cm ™", assigned to the RBM and G-band of SWCNTs,
respectively. This result gives a clear indication that SWCNTs
are contained in bubbles and also transferred to the substrate
through the printing process.

The alignment of SWCNTs in the bubble membrane was
investigated by measuring the polarization-angular depen-
dence of the G-band intensity, I5(0). 0 is defined as an angle
between the polarization angle of the Raman excitation laser
beam and x-axis (Figure 4(a)). Figures 4(b)-4(e) show I;(6)

at four different positions signed in Figure 4(a): at “b” the top
edge of the membrane (Figure 4(b)), at “c” the right edge of
the membrane (Figure 4(c)), at “d” the center of the mem-
brane (Figure 4(d)), and at “¢” on coffee ring at the right side
(Figure 4(e)). The plots in Figures 4(c) and 4(d) show that
the G-band intensity becomes largest when the polarization
is parallel to the radial direction, while the intensity becomes
smallest when the polarization is perpendicular. From the
fitting curve, the nematic order parameter S is calculated to
be 0.23 and 0.19 at the positions “b” and “c,” respectively.
These results clearly indicate that SWCNTs embedded in the
membrane are oriented toward the center of the imprint. On
the contrary, the plot in Figure 4(d) corresponding to the near
center shows no specific angular dependence, as S is obtained
as 0.07. This result indicates that SWCNTs are randomly
oriented at the center. It is worth noting that the alignment
on the coffee ring (Figure 4(e)) differs from that of the inside
(Figure 4(c)). The G-band intensity becomes largest when the
polarization is parallel to the boundary, while the intensity
becomes smallest when the polarization is perpendicular.
The result indicates that SWCNTs on the coffee ring are
oriented along the coffee ring, namely, azimuthally aligned.

« »

S at the position “¢” on the coffee ring is calculated to be 0.52.
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FIGURE 3: Raman spectrum taken from a bubble imprint in RBM region (a) and D-band and G-band region (b).
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FIGURE 4: (a) Schematic of a bubble imprint representing measurement areas with polarized Raman microscopy. 0 is defined as an angle
between the laser polarization and x-axis. Polarization angular dependence taken from (b) the top edge of the bubble membrane, (c) the
right edge of the bubble membrane, (d) the center of the membrane, and (e) in the coffee ring. S is defined as the nematic order parameters.
(f) Ilustration showing the orientation of SWCNTs in a bubble imprint.
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FIGURE 5: (a) Schematic of a spun bubble imprint representing measurement areas with polarized Raman microscopy. 0 is defined as an
angle between the laser polarization and x-axis. (b) Polarization angular dependence taken from the coffee ring at the right boundary.
(c) Ilustration showing the orientation of SWCNTs in a spun bubble imprint.

This means that the SWCNTs on the coffee ring are more
strongly aligned compared to the SWCNTs in the inside
of the coffee ring. On the basis of the obtained results in
Figures 4(b)-4(e), the alignment of SWCNTs in the imprint is
depicted in Figure 4(f). There are three patterns of alignment
of SWCNTs: (i) radial alignment at the inside of the coffee
ring, (ii) azimuthal alignment on the coffee ring, and (iii)
random orientation at the center.

We demonstrated the same experiment with spinning
bubbles. The printing process of a spun bubble is shown in
Figure 5(a). A bubble was created on a glass substrate, and
subsequently the glass substrate was spun at 500 rpm using
a spin coater. The speed of 500 rpm was the highest speed
that we could perform the experiments at due to bubble
instability at higher rotational speeds. The spun bubble
was pressed by another glass substrate that was held until

the bubble popped, just as was done for an unspun bubble.
The alignment of SWCNTs in the spun bubble was inves-
tigated with the same polarized Raman microscopy setup
described above. 0 is defined as an angle between the laser
polarization and x-axis (Figure 5(b)). Figure 5(c) shows 15(0)
taken from the right side of the coffee ring. In the plot, the
G-band intensity becomes largest when the polarization is
parallel to the boundary (8 ~0°), while the intensity becomes
smallest when the polarization is perpendicular (8 ~ £90°).
This means that SWCNTs on the coffee ring were radially
aligned, as illustrated in Figure 5(d). The result differs from
that of the unspun bubble that exhibits azimuthal alignment
on the coffee ring. S for the coffee ring was calculated to
be 0.18. This value is smaller compared to unspun bubbles
(S ~0.52). On the other hand, in the case of a spun bubble, no
G-band Raman signal was detected at the inside of the coffee



ring. This result implies that there are no or few SWCNTs at
the inside, probably due to the centrifugal force that makes
SWCNTs go away from the center of the bubble during
spinning.

4, Discussion

Here, we separate alignment mechanisms for inside the coffee
ring and on the coffee ring. For the alignment inside of
the coffee ring, the alignment is induced by water runoft.
After bubbles are created, water runs down from the top of
the bubbles due to the drainage [18]. This water flow aligns
SWCNTs toward the water-flow direction, resulting in the
radial orientation inside the coffee ring. By contrast, at the
top, SWCNTs do not flow in specific directions, resulting in
the random orientation at the center of the bubble imprints.

For the coffee ring, the alignment occurs during evapo-
ration of a coffee ring shaped droplet. There is a successful
report that shows, in a microsized hemicylindrical droplet,
SWCNTs were aligned along the long axis of the droplet
during evaporation [24]. This alignment was induced by
an internal hydrodynamic flow of a drying hemicylindrical
droplet that carries nanotubes to the interface. The same
alignment mechanism should also work in ring shaped
hemicylindrical droplets in our study, thereby leading to the
azimuthal alignment on the coffee ring.

However, as observed in our experimental results, the
alignment on the coffee ring created from a spun bubble
differed from that of an unspun bubble. We presume that
the alignment does not occur during evaporation of a coffee
ring shaped droplet in the spun bubble case because the
coffee ring shaped droplet was blurry after bubble printing,
compared to the unspun bubble case. We think that the
realignment does not occur during the evaporation because
of quick evaporation resulting from thinly spread out liquid.
Instead, the alignment in the bubble membrane, that is,
radial alignment, is imprinted to the substrate. The different
alignment mechanism from unspun bubbles possibly results
from the centrifugal force during spinning process. As a
bubble is spun, the bubble is slightly expanded and flattened
due to centrifugal force, leading to further thinning of
the bubble membrane. Therefore, the coffee ring shaped
droplet created after bubble imprints was much shorter in
height and spread out when compared to the unspun bubble
case.

The overall results are statistically reproducible, and the
reproducibility of the results in the given condition is ~70%
for unspun bubbles and ~40% for spun bubbles. The repro-
ducibility could be improved by optimizing experimental
conditions. We think the following two parameters are the
most important to improve the reproducibility: (1) timing
of the bubble printing after bubble creation and (2) con-
centration of both SWCNTs and surfactants. It is discussed
in a previous report of Tang et al. [18] that if the bubble
film is transferred to a substrate at too early of a stage, that
is, right after bubble creation, one might obtain a random
SWCNT distribution. This is because the alignment relies
on the self-organization of SWCNTs in bubble membrane

Journal of Nanomaterials

and so SWCNTs are not fully aligned at the early stage.
Tang et al. [18] also noted that the concentration of SWCNT
and surfactants is a critical parameter for the alignment in
the bubble printing method, because SWCNTs cannot self-
organize their alignment in bubble membranes under low
concentration of SWCNTSs and/or high concentration of sur-
factants. We thus presume that optimizing these parameters
will lead to an improvement of the reproducibility and the
strength of the alignment.

5. Conclusion

We have studied the alignment of SWCNTs in bubble
imprints through polarized Raman microcopy. There are
three patterns of alignment of SWCNTs in the imprints:
radial, azimuthal, and random orientations, which are found
at the near boundary, on the coffee ring, and the center,
respectively. We suggest that the alignment mechanism
involves two factors: water molecule runoff, and evapora-
tion. We have also found that the alignment of SWCNTs
in the imprints can be manipulated by spinning bubbles.
The bubble spun at 500 rpm exhibits radial alignment of
SWCNTs on the coffee ring, which is rotated by 90 degrees,
compared to unspun bubbles. Although the rotational speed
dependence has not been examined, this result implies a
possibility to manipulate the alignment in bubble imprints.
The bubble imprint method provides macroscopic ensembles
of aligned SWCNTs, whose nematic order parameters, S,
reach 0.5. Although the strength of the alignment of SWCNTs
obtained by the bubble printing method is weaker than
or comparable to other methods such as in situ growth
methods [12, 13] and mechanical stretching methods [7, 14],
our bubble imprints would be enough to exhibit anisotropic
properties including electrical and thermal conductivity [16].
The bubble printing method, thus, leads to a wide range of
applications that include electronic [5, 6] and optical devices
(7, 8].
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