4,480 research outputs found

    Diffusion-Induced Oscillations of Extended Defects

    Full text link
    From a simple model for the driven motion of a planar interface under the influence of a diffusion field we derive a damped nonlinear oscillator equation for the interface position. Inside an unstable regime, where the damping term is negative, we find limit-cycle solutions, describing an oscillatory propagation of the interface. In case of a growing solidification front this offers a transparent scenario for the formation of solute bands in binary alloys, and, taking into account the Mullins-Sekerka instability, of banded structures

    Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage

    Full text link
    We propose a simple technique for the generation of arbitrary-sized Dicke states in a chain of trapped ions. The method uses global addressing of the entire chain by two pairs of delayed but partially overlapping laser pulses to engineer a collective adiabatic passage along a multi-ion dark state. Our technique, which is a many-particle generalization of stimulated Raman adiabatic passage (STIRAP), is decoherence-free with respect to spontaneous emission and robust against moderate fluctuations in the experimental parameters. Furthermore, because the process is very rapid, the effects of heating are almost negligible under realistic experimental conditions. We predict that the overall fidelity of synthesis of a Dicke state involving ten ions sharing two excitations should approach 98% with currently achievable experimental parameters.Comment: 14 pages, 8 figure

    Pulse-driven near-resonant quantum adiabatic dynamics: lifting of quasi-degeneracy

    Full text link
    We study the quantum dynamics of a two-level system driven by a pulse that starts near-resonant for small amplitudes, yielding nonadiabatic evolution, and induces an adiabatic evolution for larger amplitudes. This problem is analyzed in terms of lifting of degeneracy for rising amplitudes. It is solved exactly for the case of linear and exponential rising. Approximate solutions are given in the case of power law rising. This allows us to determine approximative formulas for the lineshape of resonant excitation by various forms of pulses such as truncated trig-pulses. We also analyze and explain the various superpositions of states that can be obtained by the Half Stark Chirped Rapid Adiabatic Passage (Half-SCRAP) process.Comment: 21 pages, 12 figure

    Eye of the Beholder: Investigating the Interplay between Inquiry Role Diversification and Social Perspective Taking

    Get PDF
    Students and teachers engage in specific roles in classrooms, and within inquiry classrooms, these roles tend to be more varied compared to traditional settings. Teachers may take on traditional student roles including the role of learner, and students, for example, take on the additional role of question asker, traditionally reserved for the role of a teacher. Several of these roles are specific to perspective taking, in particular, social perspective taking (SPT). SPT is critical to successful social interactions and, because group work occurs frequently within inquiry-based teaching and learning environments, a better understanding of SPT roles is required. SPT roles within two different inquiry classrooms were closely examined through audiorecorded group interactions. Additional data were collected in the form of questionnaires, interviews, student and teacher log responses, and field notes. Two teachers and eight students participated. Social perspective-taking roles were dynamic and susceptible to influences including the nature of the classroom activities and instructional choices, student personality differences, and group-work dynamics. All participants adopted SPT roles, however, students who played an active role in choosing their work partners and who were assigned a task that required a consideration of the audience’s understanding tended to adopt more Imagine Other roles as opposed to Imagine Self roles and also adopted more emotionally-based SPT roles compared to students in teacher-formed groups who were assigned more cognitively-based assignments. Implications for researchers, consultants, and students and teachers were discussed

    Temperature Dependence of Facet Ridges in Crystal Surfaces

    Full text link
    The equilibrium crystal shape of a body-centered solid-on-solid (BCSOS) model on a honeycomb lattice is studied numerically. We focus on the facet ridge endpoints (FRE). These points are equivalent to one dimensional KPZ-type growth in the exactly soluble square lattice BCSOS model. In our more general context the transfer matrix is not stochastic at the FRE points, and a more complex structure develops. We observe ridge lines sticking into the rough phase where thesurface orientation jumps inside the rounded part of the crystal. Moreover, the rough-to-faceted edges become first-order with a jump in surface orientation, between the FRE point and Pokrovsky-Talapov (PT) type critical endpoints. The latter display anisotropic scaling with exponent z=3z=3 instead of familiar PT value z=2z=2.Comment: 12 pages, 19 figure

    Time Ordering in Kicked Qubits

    Full text link
    We examine time ordering effects in strongly, suddenly perturbed two-state quantum systems (kicked qubits) by comparing results with time ordering to results without time ordering. Simple analytic expressions are given for state occupation amplitudes and probabilities for singly and multiply kicked qubits. We investigate the limit of no time ordering, which can differ in different representations.Comment: 26 pages, 5 figure

    Anticoagulation Management and Heparin Resistance During Cardiopulmonary Bypass: A Survey of Society of Cardiovascular Anesthesiologists Members

    Get PDF
    We surveyed Society of Cardiovascular Anesthesiologists members regarding anticoagulation practices for cardiopulmonary bypass and attitudes on heparin resistance. Of 550 respondents (18.5% response rate), 74.9% (95% CI, 71.3%-78.5%) used empiric weight-based dosing of heparin, and 70.7% (95% CI, 66.9%-74.5%) targeted an activated clotting time of either 400 or 480 seconds to initiate cardiopulmonary bypass. Of note, 17.1% (95% CI, 13.9%-20.2%) of respondents reported activated clotting time targets lower than those recommended by recent 2018 Society of Thoracic Surgeons/Society of Cardiovascular Anesthesiologists/American Society of Extracorporeal Technology guidelines or failed to monitor heparin effects at all. When heparin resistance was encountered, 54.2% of respondents (95% CI, 50.0%-58.4%) administered antithrombin concentrates as a first-line therapy

    Discovery of Raman-scattered lines in the massive luminous emission-line star LHA 115-S 18

    Get PDF
    LHA 115-S 18 is a very peculiar emission-line star exhibiting the B[e] phenomenon. Located in the Small Magellanic Cloud, its spectrum shows features of an extremely wide range of excitation and ionization stages, extending from highly ionized atomic lines (Si IV, C IV, He II) in the UV and optical regions to molecular emission bands of CO and TiO in the optical and IR regions. The most distinguishing spectral characteristic of LHA 115-S 18 is the high variability detected in the He II {\lambda}4686 emission line, which can be a very conspicuous or completely invisible feature. In this work, we report on another peculiarity of LHA 115-S 18. From high-resolution optical spectra taken between 2000 and 2008, we discovered the appearance and strengthening of two emission features at {\lambda}6825 \AA, and {\lambda}7082 \AA,, which we identified as Raman-scattered lines. This is the first time these lines have been detected in the spectrum of a massive luminous B[e] star. As the classification of LHA 115-S 18 is highly controversial, we discuss how the discovery of the appearance of Raman-scattered lines in this peculiar star might help us to solve this puzzle.Comment: Letter accepted for publication in MNRAS. 5 pages, 3 figure

    Molecular heat pump for rotational states

    Get PDF
    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems

    The spectroscopic evolution of the symbiotic-like recurrent nova V407 Cygni during its 2010 outburst. I. The shock and its evolution

    Full text link
    On 2010 Mar 10, V407 Cyg was discovered in outburst, eventually reaching V< 8 and detected by Fermi. Using medium and high resolution ground-based optical spectra, visual and Swift UV photometry, and Swift X-ray spectrophotometry, we describe the behavior of the high-velocity profile evolution for this nova during its first three months. The peak of the X-ray emission occurred at about day 40 with a broad maximum and decline after day 50. The main changes in the optical spectrum began at around that time. The He II 4686A line first appeared between days 7 and 14 and initially displayed a broad, symmetric profile that is characteristic of all species before day 60. Low-excitation lines remained comparatively narrow, with v(rad,max) of order 200-400 km/s. They were systematically more symmetric than lines such as [Ca V], [Fe VII], [Fe X], and He II, all of which showed a sequence of profile changes going from symmetric to a blue wing similar to that of the low ionization species but with a red wing extended to as high as 600 km/s . The Na I D doublet developed a broad component with similar velocity width to the other low-ionization species. The O VI Raman features were not detected. We interpret these variations as aspherical expansion of the ejecta within the Mira wind. The blue side is from the shock penetrating into the wind while the red wing is from the low-density periphery. The maximum radial velocities obey power laws, v(rad,max) t^{-n} with n ~ 1/3 for red wing and ~0.8 for the blue. (truncated)Comment: Accepted for publication, A&A (submitted: 9 Oct 2010; accepted: 1 Dec 2010) in press; based on data obtained with Swift, Nordic Optical Telescope, Ondrejov Observatory. Corrected typo, Fermi?LAT detection was at energies above 100 MeV (with thanks to C. C. Cheung
    corecore