133 research outputs found

    The Association of Physical Activity during Weekdays and Weekend with Body Composition in Young Adults

    Get PDF
    Physical activity (PA) is a key contributor in long-term weight management but there remains limited research on the association between weekly PA patterns and weight change. The purpose of the present study was to examine the prospective association between weekly PA patterns and weight change in generally healthy young adults. Anthropometric measurements, including dual X-ray absorptiometry, were obtained every 3 months over a period of one year in 338 adults (53% male). At each measurement time, participants wore a multisensor device for a minimum of 10 days to determine total daily energy expenditure and time spent sleeping, sedentary, in light PA (LPA), in moderate PA (MPA), and in vigorous PA (VPA). PA did not differ between weekdays and the weekend at baseline. Twenty-four-hour sleep time, however, was significantly longer during weekends compared to weekdays, which was associated with less time spent sedentary. Weight loss was associated with a significant increase in LPA at the expense of sedentary time during the weekend but not during weekdays. Regression analyses further revealed an inverse association between change in VPA during the weekend and body composition at 12-month follow-up. Taken together, these results suggest that weekend PA plays an important role in long-term weight management

    The Association of Physical Activity during Weekdays and Weekend with Body Composition in Young Adults

    Get PDF
    Physical activity (PA) is a key contributor in long-term weight management but there remains limited research on the association between weekly PA patterns and weight change. The purpose of the present study was to examine the prospective association between weekly PA patterns and weight change in generally healthy young adults. Anthropometric measurements, including dual X-ray absorptiometry, were obtained every 3 months over a period of one year in 338 adults (53% male). At each measurement time, participants wore a multisensor device for a minimum of 10 days to determine total daily energy expenditure and time spent sleeping, sedentary, in light PA (LPA), in moderate PA (MPA), and in vigorous PA (VPA). PA did not differ between weekdays and the weekend at baseline. Twenty-four-hour sleep time, however, was significantly longer during weekends compared to weekdays, which was associated with less time spent sedentary. Weight loss was associated with a significant increase in LPA at the expense of sedentary time during the weekend but not during weekdays. Regression analyses further revealed an inverse association between change in VPA during the weekend and body composition at 12-month follow-up. Taken together, these results suggest that weekend PA plays an important role in long-term weight management

    Measurement Report: Long-Range Transport Patterns into the Tropical Northwest Pacific during the CAMP²Ex Aircraft Campaign: Chemical Composition, Size Distributions, and the Impact of Convection

    Get PDF
    The tropical Northwest Pacific (TNWP) is a receptor for pollution sources throughout Asia and is highly susceptible to climate change, making it imperative to understand long-range transport in this complex aerosol-meteorological environment. Measurements from the NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex; 24 August to 5 October 2019) and back trajectories from the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) were used to examine transport into the TNWP from the Maritime Continent (MC), peninsular Southeast Asia (PSEA), East Asia (EA), and the West Pacific (WP). A mid-campaign monsoon shift on 20 September 2019 led to distinct transport patterns between the southwest monsoon (SWM; before 20 September) and monsoon transition (MT; after 20 September). During the SWM, long-range transport was a function of southwesterly winds and cyclones over the South China Sea. Low- (high-) altitude air generally came from MC (PSEA), implying distinct aerosol processing related to convection and perhaps wind shear. The MT saw transport from EA and WP, driven by Pacific northeasterly winds, continental anticyclones, and cyclones over the East China Sea. Composition of transported air differed by emission source and accumulated precipitation along trajectories (APT). MC air was characterized by biomass burning tracers while major components of EA air pointed to Asian outflow and secondary formation. Convective scavenging of PSEA air was evidenced by considerable vertical differences between aerosol species but not trace gases, as well as notably higher APT and smaller particles than other regions. Finally, we observed a possible wet scavenging mechanism acting on MC air aloft that was not strictly linked to precipitation. These results are important for understanding the transport and processing of air masses with further implications for modeling aerosol lifecycles and guiding international policymaking to public health and climate, particularly during the SWM and MT

    Advances in the Projective Dynamics Method: A Procedure of Discretizing the Space applied to Markovian Processes

    Get PDF
    AbstractThe projection of a continuous space process to a discrete space process via the transition rates between neighboring bins allows us to relate a master equation to a solution of a stochastic differential equation. The presented method is formulated in its general form for the first time and tested with the Brownian Diffusion process of noninteracting particles with white noise in simple one-dimensional potentials. The comparison of the first passage time obtained with Projective Dynamics, Brownian motion simulations and analytical solutions show the accuracy of this method as well as a wide independence of the particular choice of the binning process

    Retrievals of Cloud Droplet Size from the Research Scanning Polarimeter Data: Validation Using In Situ Measurements

    Get PDF
    We present comparisons of cloud droplet size distributions (DSDs) retrieved from the research scanning polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne portion of this field experiment was based out of St. John's airport, Newfoundland, Canada with the focus of this paper being on the deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring the polarized and total reflectance in 9 spectral channels. Its uniquely high angular resolution allows for characterization of liquid water droplet sizes using the rainbow structure observed in the polarized reflectance over the scattering angle range from 135 to 165.degrees The rainbow is dominated by single scattering of light by cloud droplets, so its structure is characteristic specifically of the droplet sizes at cloud top (within unit optical depth into the cloud, equivalent to approximately 50m). A parametric fitting algorithm applied to the polarized reflectance provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, the Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of clouds with complex microphysical structure, or multiple layers of cloud, which result in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparisons between remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was near the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons generally show good agreement (better than 1 micron for effective radius and in most cases better than 0.02 for effective variance) with deviations explainable by the position of the aircraft within the cloud, or by the presence of additional cloud layers between the cloud being sampled by the in situ instrumentation and the altitude of the remote sensing segment. In the latter case, the multi-modal DSDs retrieved from the RSP data were consistent with the multi-layer cloud structures observed in the correlative High Spectral Resolution Lidar (HSRL) profiles. The results of these comparisons provide a rare validation of polarimetric droplet size retrieval techniques, demonstrating their accuracy and robustness and the potential of satellite data of this kind on a global scale

    Aircraft Engine Particulate Matter Emissions from Sustainable Aviation Fuels: Results from Ground-Based Measurements during the NASA/DLR Campaign ECLIF2/ND-MAX

    Get PDF
    The use of alternative jet fuels by commercial aviation has increased substantially in recent years. Beside the reduction of carbon dioxide emission, the use of sustainable aviation fuels (SAF) may have a positive impact on the reduction of particulate emissions. This study summarizes the results from a ground-based measurement activity conducted in January 2018 as part of the ECLIF2/ND-MAX campaign in Ramstein, Germany. Two fossil reference kerosenes and three different blends with the renewable fuel component HEFA-SPK (Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene) were burned in an A320 with V2527-A5 engines to investigate the effect of fuel naphthalene/aromatic content and the corresponding fuel hydrogen content on non-volatile particle number and mass emissions. Reductions up to 70% in non-volatile particle mass emission compared to the fossil reference fuel were observed at low power settings. The reduction trends to decrease with increasing power settings. The fuels showed a decrease in particle emission with increasing fuel hydrogen content. Consequently, a second fossil fuel with similar hydrogen content as one of the HEFA blends featured similar reduction factors in particle mass and number. Changes in the fuel naphthalene content had significant impact on the particle number emission. A comparison to in-flight emission data shows similar trends at cruise altitudes. The measurements highlight the importance of individual fuel components in regulating engine emissions, particularly at the low thrust settings typically employed during ground operations (e.g. during idle and taxi). Therefore, when selecting and mixing SAF blends to meet present fuel-certification standards, attention should be paid to minimizing complex aromatic content to achieve the greatest possible air quality and climate benefits

    Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

    Get PDF
    Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154–0.0296; R = 0.76; N = 2,948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio toward higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing

    Particulate Oxalate-to-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

    Get PDF
    Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154 – 0.0296; R = 0.76; N = 2948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio towards higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing
    • …
    corecore