5 research outputs found

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Mathematical Modeling of 1, 3-Butadiene Polymerization Initiated by Hydrogen Peroxide

    No full text
    In this study, the modeling of polymerization of 1, 3-butadiene in the presence of hydrogen peroxide has been reported for the first time. For this purpose, the Method of double moments was applied. The modeling has been performed to investigate the effect of reaction condition on the properties of synthesized Polybutadiene, and the role of kinetic coefficients on the output of model i.e. sensitivity analysis. A comprehensive kinetic model was developed based on previous experimental studies. Then, the moment and population balance of the reactants were obtained. Modeling results were used to study the role of initiator concentration and the type of solvent in polymerization kinetics and final polymer properties. In addition, the sensitivity of modeling results in a transfer to the initiator, radical coupling and finally transfer to polymer reactions was investigated. This study opens a way for the engineering of manufacturing the Hydroxyl-Terminated PolyButadiene (HTPB) process to obtain the desired products with optimized reaction conditions. Results show that initiator concentration and type of solvent are important in polymerization kinetics and properties of HTPBs. A higher amount of initiator increases radical concentration and consequently rates of bimolecular termination and at the lower level, rate of propagation, and polymer double bonds reactions

    Enhancing risk assessment of manufacturing production process integrating failure modes and sequential fuzzy cognitive map

    Get PDF
    When a risk occurs in a stage of the production process, it can be due to the risks of the previous stages, or it is effective in causing the risks in the later stages. The current paper proposes an intelligent approach based on cause-and-effect relationships to assess and prioritize a manufacturing unit’s risks. Sequential multi-stage fuzzy cognitive maps (MSFCMs) are used for drawing the map of risks. Then, the learning algorithm is implemented for learning the MSFCM and finalizing the risks score. A case study on an auto-parts manufacturing unit is applied to demonstrate the capabilities of the proposed approach

    Modeling of Living Cationic Ring-Opening Polymerization of Cyclic Ethers: Active Chain End versus Activated Monomer Mechanism

    No full text
    Living cationic ring-opening polymerization of cyclic ethers in the presence of diol was modeled using the method of moments. A widespread kinetic model was developed based on the previous experimental studies. Then, the moment and population balance of reactants were obtained. Modeling results were employed to study the influence of initiator and water amounts (as the impurity) as well as feeding policy in polymerization kinetics and final properties of the polymer. In addition, the sensitivity of modeling results to initiation, backbiting, and finally propagation via activated monomer reactions were investigated. Results showed the population of chains is the function of their precursors. In a typical polymerization, chains with diol functionality are the majority. Therefore, most of the polymerized monomers are incorporated into those chains. This makes the chains with diol functionality the determining group in Molecular Weight Distribution (MWD). The kinetics of polymerization and properties of the reactor's product are highly dependent on the ratio of the rate of propagation via Activated Monomer (AM) mechanism to the rate of propagation via active chain end (ACE). An increase in this ratio decreases the probability of occurrence of backbiting reaction. Therefore, cyclic dimers are less formed and MWD narrows. On the other hand, decreasing this ratio results in less diol reacted with protonated monomers. Consequently, the rate of regeneration of initiator and hence the rate of polymerization is decreased. These findings give complete facts about the ring-opening syntheses of polyethers and are valuable for evolving new grades as well as optimization current processes

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    No full text
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% 47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% 32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% 27.9-42.8] and 33.3% 25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
    corecore