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ABSTRACT

When a risk occurs in a stage of the production process, it can be due to the risks of the
previous stages, or it is effective in causing the risks in the later stages. The current paper
proposes an intelligent approach based on cause-and-effect relationships to assess and pri-
oritize a manufacturing unit’s risks. Sequential multi-stage fuzzy cognitive maps (MSFCMs)
are used for drawing the map of risks. Then, the learning algorithm is implemented for
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learning the MSFCM and finalizing the risks score. A case study on an auto-parts manufac-
turing unit is applied to demonstrate the capabilities of the proposed approach.

1. Introduction

Due to the increasing trend of people’s desire for per-
sonal transportation in daily life, and consequently,
the increasing number of traffic accidents and their
excessive risks, a part of the car called brake pads
plays an important role in car safety and passengers’
lives. Most people who are familiar with cars’ mecha-
nisms or experience in driving know that stopping a
car is more crucial than starting and driving. A car
that does not start will not pose any danger to the
driver, passengers, or even the car itself. However, if
the car’s brakes do not work correctly, it could be a
death trap. The brake is a mechanism to slow down
or stop the car from moving. In these processes, the
kinetic energy of the car is converted to heat by abra-
sive action. Therefore, brakes are the most important
part of car safety, and if the brakes work correctly and
prevent accidents, safety devices such as airbags are
less commonly used. Thus, it is essential to pay atten-
tion to the car’s safety and the passengers’ lives.
Therefore, all available tools must be used to produce
safe and high-quality brake pads so that the lives of
the passengers and other human beings are not
endangered. To this end, the manufacturing process’s
failures leading to the production of defective prod-
ucts with low quality should be extracted to corrective
actions to be carried out on them.

Failure mode and effects analysis (FMEA) is a valu-
able risk assessment technique, which has been intro-
duced as a credible technique among risk assessment
techniques (Rezaee et al. 2018). FMEA, as an analyt-
ical technique, defines, identifies, and eliminates
known and/or potential failures, problems, errors of
the system, design, process, and/or service before they
reach the customer (Liu, Liu, and Liu 2013). The
main purpose of FMEA is to identify potential failure
modes, evaluate the causes and effects of different
component failure modes, and determine what could
remove or alleviate the chance of failure. Analysts can
apply the analysis results to identify and correct the
failure modes that have a detrimental effect on the
system and improve its performance during design
and production stages (Liu, Liu, and Liu 2013). The
risk priority orders of the identified failure modes are
determined by a risk priority number (RPN) score.
The RPN is calculated by multiplying the three risk
factors: occurrence (O), severity (S), and detection
(D), where S and O denote the severity and occur-
rence of a failure, and D is defined as the probability
of the failure not being detected before it reached the
customer (Liu et al. 2019). Although traditional
FMEA has been proven to be one of the most signifi-
cant early preventative actions that will prevent fail-
ures and errors from occurring, the conventional RPN
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method has been criticized extensively in the literature
for many reasons (Liu, Liu, and Liu 2013). Liu, Liu,
and Liu (2013) summarized some of the most critical
drawbacks of conventional RPNs as follows: the rela-
tive importance among S, O, and D is not considered,
different combinations of S, O, and D may produce
the same value of RPN, but their hidden risk implica-
tions may be completely different, the formula for cal-
culating RPN does not have a strong mathematical
background, the conversion of scores is different for
the three risk factors, the RPN cannot be implemented
to evaluate the effectiveness of corrective actions, etc.
Furthermore, RPN independently determines SOD
factors for each failure and disregards causal relation-
ships between failures. Accordingly, it leads to the
change in the priority of studied failures, which is one
of its fundamental problems (Rezaee et al. 2018). In
the real world and according to the process-oriented
view, production stages are not implemented simul-
taneously. Moreover, potential failures do not occur
simultaneously; some failures are affected by the fail-
ures of previous stages and/or subsequent stages
(Rezaee et al. 2018).

Due to the problems mentioned above and the
high importance of producing safe brake pads with
high quality to work correctly in driving, an inte-
grated approach is implemented in the present paper.
The approach is based on the combination of process
failure mode and effects analysis (PFMEA) and multi-
stage fuzzy cognitive map (MSFCM). MSFCM was
introduced by Rezaee, Salimi, et al. (2017) for consid-
ering the impact of previous and subsequent failures
on the current failures in a stage-by-stage perspective.
This method considers causal relationships between
different failures of the previous and subsequent
stages and is a more reliable and logical method to
calculate RPN scores. In the first step of this
approach, potential failures of the manufacturing pro-
cess of the brake pads are determined in every stage
of the production process based on the view of the
cross-functional team (CFT). FMEA technique is one
of the most practical methods for identifying, classify-
ing, analyzing, and evaluating hazards and their risks
in the industries. Parsana and Patel (2014) used
FMEA to identify and eliminate current and potential
problems from a manufacturing process of the cylin-
der heads company for improving the reliability of
subsystems. Nguyen, Shu, and Hsu (2016) considered
the quality cost and capacity as key factors for devel-
oping RPN scores, and the extended RPN score was
assessed in a non-woven fabric manufacturing indus-
try. Fattahi and Khalilzadeh (2018) applied the fuzzy

weighted RPN for failures, and SOD factors’ weight,
then failure modes were computed by extended fuzzy
analytic hierarchy process (AHP) as well as fuzzy mul-
tiple multi-objective optimizations by ratio analysis
(MULTI-MOORA) methods in a steel manufacturing
industry. Baynal, Sar1, and Akpinar (2018) proposed
an integrated method combining gray relational ana-
lysis (GRA) with FMEA to contribute to risk manage-
ment activities by proposing solutions to assembly-
line problems in an automotive manufacturing com-
pany.  Foroozesh,  Tavakkoli-Moghaddam, and
Mousavi (2018) proposed a new FMEA model based
on multi-criteria decision-making (MCDM) by a
group of supply chain-experts with interval-valued
fuzzy settings and asymmetric uncertainty information
concurrently in the manufacturing services. Li and
Chen (2019) introduced a novel evidential FMEA
integrating fuzzy belief structure and gray relational
projection method to avoid using traditional RPN in a
sheet steel production process of a steel manufactur-
ing factory. Soltanali et al. (2019) proposed a compre-
hensive survey to overcome the drawbacks of the
traditional FMEA through incorporating the fuzzy
inference system (FIS) and effective attributes, includ-
ing various scales and rules, different membership
functions, various defuzzification algorithms, and their
impacts on fuzzy RPN in an automotive production
line. Boral et al. (2020) proposed a novel integrated
MCDM approach by combining the fuzzy AHP with
the modified fuzzy multi-attribute ideal real compara-
tive analysis (modified FMAIRCA) to improve the
risk estimation process in FMEA. Mangeli, Shahraki,
and Saljooghi (2019) used a hybrid method according
to the support vector machine and FIS to reduce the
effect of personnel’s opinions in determining the fac-
tors of the severity and occurrence. Moreover, loga-
rithmic  fuzzy  preference  programming  was
implemented to ascertain the crisp weight of the
dependent factor of FMEA and revised the fuzzy tech-
nique for order of preference by similarity to ideal
solution (TOPSIS) used for a more accurate ranking
of risks. Onari, Yousefi, Rabieepour, et al. (2021)
implemented the combination of Z-number and
MSFCM to consider the uncertainty in the car manu-
facturing industry and trained the MSFCM with
fuzzy numbers.

Afterward, each failure is considered as a concept
of the MSFCM according to the manufacturing pro-
cess. To calculate the initial value of the concepts,
they are considered an objective node for fuzzy cogni-
tive map (FCM), and SOD factors are taken into
account as the concepts of FCM. By training FCM,



Table 1. Traditional FMEA scales.
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Rating Severity (S) Occurrence (0O) Detection (D)
10 Hazardous without warning Extremely high; failure is almost inevitable Absolute uncertainty
9 Hazardous with warning Very high Very remote

8 Very high Repeated failures Remote

7 High High Very low

6 Moderate Moderately high Low

5 Low Moderate Moderate

4 Very low Relatively low Moderately high
3 Minor Low High

2 Very Minor Remote Very high

1 None Nearly impossible Almost certain

the initial value of concepts is obtained. FCMs are
used for modeling complexity and management pro-
cedures. They can successfully demonstrate knowledge
and human experience, introducing concepts and
cause and effect relationships (Papageorgiou et al.
2017; Rezaee, Yousefi, and Hayati 2019). FCM pos-
sesses various applications in fields such as the deci-
sion support system (Douali et al. 2015),
environmental science (Demertzis et al. 2018), sup-
plier selection problem (Onari and Rezaee 2020), time
series prediction (Lu et al. 2014), medical diagnosis
(Papageorgiou et al. 2015), predicting the severity level
of Covid-19 (Onari, Yousefi, Rabieepour, et al. 2021),
etc. Furthermore, FCM can be implemented in risk
assessment problems in various domains. Jamshidi
et al. (2018) proposed an integrated generalized deci-
sion support tool for dynamic risk assessment of com-
plex systems by employing FCM. Azar and Dolatabad
(2019) proposed an integrated approach based on
FCM and Bayesian belief networks (BBN) to amelior-
ate BBN’s capability to model operational risks in an
Iranian private bank. Dabbagh and Yousefi (2019)
proposed a hybrid decision-making approach based
on FMEA, FCM, and MOORA for assessing and pri-
oritizing occupational health and safety risks. Chen,
Zhang, and Wu (2020) proposed a robust model for
integrating the structural equation model and FCM to
perceive and assess the performance risk in public-pri-
vate partnership projects. Afterward, the whole of the
map is trained stage-by-stage according to the
MSFCM method. Finally, after reaching the steady-
state of the map, the failures are ranked based on
their achieved scores.

The rest of the present article is organized as fol-
lows: In “Methodology”, the implemented methods
are introduced. In “MSFCM-PFMEA approach”, the
proposed approach to apply in the present study is
described in detail. In “Case study”, the studied case
is presented. In “Analysis of the results”, the results of
the study are presented and analyzed. Finally, in

“Conclusion”, the conclusion is provided, and sugges-
tions for future works are proposed.

2. Methodology

In this section, the proposed methods are presented,
which are implemented in the current study. In the
first sub-section, the concept of the PFMEA technique
is introduced. In the second sub-section, the concept
of FCM and MSFCM is presented. Then, in the third
sub-section, the learning algorithm for the FCM and
MSFCM is described.

2.1. PFMEA

The United States Defense Department, for the first
time in 1949, introduced the FMEA, and the national
aeronautics and space administration (NASA) applied
that for the Apollo plan to enhance system reliability
in the 1960s. Because of its visibility and simplicity,
the method has been successfully implemented in
various industries (Huang et al. 2020). FMEA method
is one of the most practical methods for identifying,
classifying, analyzing, and evaluating hazards and their
risks. Organizations can identify risks and prevent
them from occurring by implementing this method.
FMEA is a systematic tool based on teamwork to rec-
ognize failures, causes, and effects of potential failures,
control, and preventive actions in a system before
production or service is delivered to the customers
(Rezaee, Salimi, et al. 2017). PFMEA consists of pos-
sible effects and mechanisms of failure modes which
are defined by the team. PFMEA is a living and
dynamic document that contains the changes in the
product design process. PEMEA attempt to reduce the
risks of failures in the process with the following steps
(Baghery, Yousefi, and Rezaee 2018):

1. Identifying the potential failure modes related to
the production process.
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W1-2

Figure 1. An FCM with seven nodes and 11 edges.

2. Confirming the severity of failure effects on
the customer.

3. Identifying two main information: a) the potential
causes in the manufacturing and assembly pro-
cess; b) the process alteration when the controls
concentrate on reducing the occurrence of failure
or tracking the failure conditions.

4. Providing an arranged list of potential failure
modes; thus, a prioritized system is established
for taking corrective actions based on RPNs.

5. Documenting the manufacturing or assembly pro-
cess results

The conventional RPN index is calculated by multi-
plying three factors of S, O, and D. These factors are
illustrated in Table 1 and are ranked from 1 to 10.
Hence, the score of 10 for risks in terms of severity
means extremely dangerous (hazardous without warn-
ing). Also, the score of 10 in terms of occurrence
means a certain occurrence (failure is almost inevit-
able), and in terms of detection means undetectable
risk (absolute uncertainty) (Rezaee and Yousefi 2018).

2.2. FCM vs MSFCM concept

FCMs are fuzzy-graph structures for demonstrating
causal relationships. Their fuzziness allows vague
degrees of causality between vague causal objects
(concepts). Their graph structure allows knowledge
bases to be grown by connecting different FCMs
(Kosko 1986). FCMs, as a structured AI technique
that incorporates ideas from artificial neural networks
(ANNSs) and fuzzy logic, can create models as a set of
causal relationships and concepts (Onari and Rezaee
2020). FCM was initially introduced by Kosko (1986)
and has emerged as a tool for modeling and studying
the behavior of complex systems (Salmeron and Lopez

2012). In the FCM, nodes represent the concepts, and
edges denote the causal relationship between the con-
cepts. The concepts indicate the key factors of the sys-
tem (characteristics, and qualities, etc.) and are
defined by C;,i =1, ..., N where N is the total number
of concepts. Each concept acquires an activation value
A;€[0,1],i=1,..,N and signed fuzzy weights W;; of
the edges between C; and C; where j=1,..,N takes
the values in the range [—1,1] (Papageorgiou et al.
2015). Wj; > 0 represents a positive and Wj; < 0 rep-
resents a negative causal relationship. Wj = 0 repre-
sents a lack of any relationship between the two
concepts. For analyzing the model, it must be mod-
eled by mathematical formulas after depicting the
map. By calculating the node’s values, the values of
other nodes connected with this node can be obtained
using Equation (1):

A g (A o)
j#i

Afkﬂ) indicates the value of C; in the iteration k+1,
Agk) indicates the value of C; in the iteration k, and
f(x) represents the normalization function, which usu-
ally is the sigmoid function (Rezaece and Yousefi
2018). An overview of an FCM is illustrated in
Figure 1.

Rezaee, Salimi, et al. (2017) initially presented the
concept of MSFCM to consider the process approach to
model complex systems that technically include the
various subsystems. The MSFCM consists of several
conventional FCMs that are related to each other as the
stage. These conventional FCMs are types of subsys-
tems that nodes (concepts, components) have causal
relationships with each other as well as other nodes of
the existing subsystems simultaneously (Rezaee, Salimi,
et al. 2017). In the MSFCM, causal relationships
between nodes in stages are internal or external.
Internal-stage causal relationships are the edges that
connect considered FCM nodes in each stage. External-
stage causal relationships are the edges that connect
nodes from one stage to nodes from other stages
(Rezaee et al. 2018). For instance, in Figure 2, Ws_; 4
is an internal relationship in stage A, and W4_3 5 is
an external relationship between stage A and B.

2.3. Learning algorithm based on the extended
delta rule

In the FCM, precise estimation of map weights to
increase their accuracy, improving the map’s structure,
and reducing dependency on experts’ opinions by
learning algorithms are important issues. The Hebbian
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FCM (C)

|l ‘ Stage C

Figure 2. An MSFCM with three stages.

algorithm is one of the most popular FCM learning
algorithms. It possesses different types such as differ-
ential Hebbian learning (DHL), active Hebbian learn-
ing (AHL), nonlinear Hebbian learning (NHL), and
data-driven NHL. One of the shortcomings of Hebbian
algorithms is the lack of convergence in some situations
(Rezaee, Salimi, et al. 2017). For this purpose, Rezaee,
Salimi, et al. (2017) introduced the Extended Delta rule
algorithm concept. Figure 3 represents the implementa-
tion steps of the Extended Delta rule learning algo-
rithm. In the first step, inputs contained a matrix of
initial concept values, which is represented by a 1 x N
matrix as A and an initial weights matrix, which is
shown by N xN matrix W® and represents the
weights between the system’s concepts. After determin-
ing the input values, the matrix of initial concept values
is determined based on each scenario (for every single
stage). Subsequently, this algorithm is implemented and
repeated for each iteration (k) until minimizing the
sum of squared errors in Equation (2), where E is a
function of all weights (edges in FCM) that its gradient
is a vector consisting of partial derivatives E to any of
the weights. Where A;(k) is the jth concept at iteration
k, and ¢; is the target value for the jth concept. In Step
3, the values of concepts are updated. By applying the
transfer function (f), the concepts are calculated by
Equation (1), the key formula of FCM.
m
(1 — AM) )

E:
j=1

j
Then, weights are updated using Equation (3) and

normalized in Steps 4 and 5, respectively
(Papageorgiou et al. 2015, Rezaee, Salimi, et al. 2017).

o4\ "
WDl 1y — AP 4D ( 2 ,) ®
Wij

)

In Equation (3), wl(jk+ is referred to as the weight

aAj) (k)

Owjj

represents the derivative of A; concerning w;; in iter-

between C; and C; in iteration (k+1) and (

ation (k). Besides, y indicates the learning parameters.
The value of t; is required to use the learning algo-
rithm because the Delta rule is a supervised learning
algorithm that is based on the existence of target val-
ues for training vectors. In the current study, the val-
ues of normalized RPN can be used as t. In Step 4,
the learning algorithm based on the Delta rule is
employed to update causal relationships’ weights. In
Step 6, the termination condition is applied to this
represents the derivative of E concerning w;; and € is

learning algorithm by using Equation (4), where

a type of numbers which is not zero but near zero,
and in the current study was set to be 0.00001
(Rezaee et al. 2018).

OE 0 &
B = g 2 =A< @

3. MSFCM-PFMEA approach

In this section, the implementation of the MSFCM
method and PFMEA technique is presented to priori-
tize production process failures. In contrast to the
previous studies, RPN has not been used to prioritize
the failures in this research. Because all the methods
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Extended Delta Rule:

OE

Step 6: Calculate oW, g J=
value).

Step 7: Until the termination condition is met.

Step 1: Read the input concept state A%and initial weight matrix W0,

Step 2: Repeat for each iteration 4 until E = Z;-”zl(tj - A]Qc))Z is minimized.

Step 3: Calculate A®) based on Agkﬂ) =f <A§k) + 3y I/Vig-k)A](-k)>
Jj#i

x)
0A;
Step 4: Update the weights based on Wl.g.kﬂ) = wa.k) +a(t;— A](k))zAgk) (i)
Step 5: Normalize W ®+1 (It is optional but recommended).

a m
= Wz(t’ —APY <&

Step 8: Return the final weights (W *1) to Meta-heuristic algorithms if it is necessary.

Yy ow;j

(Termination function, & > Qis a very small

Figure 3. Learning the FCM algorithm based on the Extended Delta rule (Rezaee, Salimi, et al. 2017).

related to RPN concentrate improvement efforts on a
mode of failure, having higher RPN might have less
impairment than the other failures with lower RPN.
The other fundamental problem of the RPN index is
that it does not consider the interrelations of failures
that can lead to changing the priority of failures to
address; the reason is that, in reality, some failures
affect other failures or are affected by them. Thus, the
suggested approach calculates the score of failure pri-
oritization based on three criteria: severity, occurrence
probability, detection probability, and cause-and-effect
relationships between failures by wusing MSFCM
instead of the RPN index, which does not include a
cause-and-effect relationship. In the suggested
approach, each stage is an index of production; to be
more accurate, each stage shows the place of failure
occurrence in a system. In other words, in any indus-
try, failures occurring in each stage have resulted from
that stage and the previous ones; in the suggested
approach, the relationships of failures in each part
with other parts have been considered. This approach
considers the severity, occurrence, and detection fac-
tors of each failure. Furthermore, the existing relation-
ships between failures are divided into internal-stage
and external-stage relationships in this approach.

In the first step of the proposed approach, the
PFMEA technique is applied to the case by the CFT.
This step’s output identifies failures in the production
process and the values of SOD factors for each failure.
Afterward, the RPN score can be calculated for each

failure using the values of these factors. In the next
step of the approach, all identified failures in the vari-
ous stages of the manufacturing process are consid-
ered MSFCM concepts. These failures are connected
by edges that indicate the causal relationships between
failures. Moreover, each factor is considered a particu-
lar concept for each failure to apply the PFMEA triple
factors. For instance, the first failure in an MSFCM
and the probable relationship with other failures will
have relationships with a deterministic weight of 1
with three factors of severity, occurrence, and detec-
tion. This action transmits the full impact of three fac-
tors’ values to the concept of failure and only is
implemented on the specific failure. The internal-stage
and external-stage causal relationships between fail-
ures of the production process are weighed based on
experts’ opinions of CFT, and ultimately the weighting
matrix of causal relationships is obtained. Now, the
MSFCM can be depicted. Figure 4 demonstrates one
of the stages of MSFCM.

As shown in Figure 4, Stage B of the MSFCM has
been presented. Each concept (failure) has causal rela-
tionships with SOD factors allocated by the CFT, and
they are input concepts of failures. Moreover, similar
to conventional FCM, each concept has causal rela-
tionships with others. For instance, Cp_; is a failure,
and SOD factors (Sg_;, Op_1, Dp_1) are connected to
that with the weight value of 1. Also, Cs_; and Cp_,
are failures that have causal relationships with each
other and also other failures in the other stages. Then,
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Figure 4. An overview of a MSFCM-

PFMEA approach.

stage of the

the score of prioritizations for each failure is calcu-
lated by defining each stage’s scenario and applying
the learning algorithm based on the extended Delta
rule. Definition of the scenario for a stage consists of
three assumptions: 1) it is assumed that all concepts
implicating the failures in this stage have a normalized
value; 2) SOD factors for each failure of this stage are
considered in the scenario; 3) trained values of failures
in the prior stage that has external-relationships with
the studied stage are considered in the scenario.

After completing FCM calculations and achieving a
steady state in the system, the score is obtained for
each failure in each stage, which is the basis for pri-
oritizing failures. This process will continue until the
completion of the investigation process of all stages.
This approach’s output is the scores for all failures of
the production process, in which the prioritization
process is based on these scores. After investigating
each stage, only nodes representing failures and hav-
ing external relationships with the next stages remain,
and other nodes with all internal relationships are
excluded from the next calculation. After calculating
the score for each system failure, it should be
explained that prioritizing failures is possible. The fail-
ures’ ranking is based on the high value of the
obtained scores, and failures with high value will have
a higher rank (Rezaee et al. 2018).

4, Case study

In the current study, the manufacturing process of
brake pads of Shabnam Lent Co. has been investigated
to prioritize manufacturing failures in the production
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process. As listed in Table 2, the production process
of brake pads in this company includes many steps
briefly mentioned in the following. Firstly, raw mater-
ial weighing for one working day is carried out con-
sidering various ingredients (phenolic resins, steel
wool, barite, slaked lime, aluminum oxide, black soot,
ceramic fiber, etc.). Then, the mixing process initiates,
and ingredients are mixed to form compounds. The
process is accomplished using a single axle rotary
mixer to ensure the highest mix level. The compound
is then weighed and pressed in the form of standard
blocks. The blocks are then cut to standard sizes by a
pre-calibrated table. The prepared blocks are formed
to the desired shape at the next step, which is
extremely close to the final shape. Afterward, pieces
are located inside the oven and cured thoroughly.
Afterward, the side parts of the brake pads are
removed by the grinding process. At the end of the
manufacturing process, the block compounds are
attached to the backing plate. Finally, quality control
and storage are performed, respectively.

5. Analysis of the results

In this section, the proposed approach results based
on the MSFCM and the Extended Delta rule are ana-
lyzed. After determining the risks of PFMEA by CFT
and prioritizing them with RPN scores, their normal
values are implemented to establish the MSFCM.
After depicting the MSFCM and determining the
causal relationships between failures, relationships’
weights are assigned by the CFT (See Figure 5
and Appendix).

Then, the MSFCM is executed, and the final values
for failures are obtained. The generated results are
compared with the conventional FCM with the
extended delta rule algorithm and the RPN score to
validate the proposed approach.

In the first step of evaluating the proposed
approach, the MSFCM is executed by the Delta rule
learning algorithm. In this section, both internal and
external relationships between failures are considered,
and the map is trained stage-by-stage. After training
the map, the results are presented in the first column
of Table 3. The results show that the failures are
ranked, and the most and least important failures are
determined. The failures F4,1, F2,1, and F3,1 have the
highest scores and are determined as the most critical
failures. Also, particular actions should be considered
to prevent devastating consequences. On the other
hand, failures F7,3, F9,3, and F1,1 have the least score
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Table 2. The list of failures of the manufacturing process and their SOD factors.

Step Process Failures Severity Occurrence Detection
1 Raw material weighing Human error F1,1 8 4 2
Measurement errors in F1,2 6 4 3
measurement scales
Visual error F1,3 4 3 4
Material moisture/wetness problems F1,4 2 4 2
Impurity incorporation F1,5 7 2 7
2 Materials mixing Incomplete mixing of components F2,1 3 2 2
Impurity incorporation F2,2 5 3 7
Improper moisture content F2,3 2 2 6
Incorrect order in materials mixing F2,4 7 2 1
3 Forming compounds into Heterogeneous hammering F3,1 8 2 3
standard blocks Deficient hammering process F3,2 7 3 3
from standard
Mold surface uncleanness F3,3 5 4 2
4 Cut and resize compounds Excessive curvature at the F4,1 7 5 2
to blocks cutting edge
The cutting surface is not smooth F4,2 5 3 2
Inaccuracy in pallet removal F4,3 3 4 1
(impact load)
5 Blocks shaping according to Improper placement of the block F5,1 10 2 2
the standard piece in the form of die
Too much pressing pressure F5,2 10 2 2
6 Condensate ingredients and Insufficient or excessive oven F6,1 10 4 4
curing blocks temperature
Temperature nonuniformity inside F6,2 6 2 5
the oven
Non-uniform cooling in different parts F6,3 6 2 5
of blocks
Improper curing time F6,4 10 2 4
7 Grinding Dimensional inaccuracy in the F7,1 8 5 3
grinding process
High feed grinding F7,2 5 5 3
Grinding wheel runout F7,3 6 4 2
8 Attach the brake blocks to Lack of adhesive quality F8,1 8 2 3
the backing plate Scratch on the surface of the F8,2 6 3 3
backing plate
Uncleanness of contacting surfaces F8,3 6 3 3
Adhesive impurities F8,4 7 3 7
Air trap in contacting surfaces F8,5 9 3 6
9 Quality control and storage Long-term storage F9,1 6 2 1
Lack of expiration date for the F9,2 7 5 1
operation at different times,
temperatures, and humidity
Inadequate storage F9,3 5 2 1

and are considered failures with the least risk for
the process.

In the next step, to validate the results based on
the MSFCM and the Extended Delta rule, they are
compared with the conventional RPN scores assigned
by the CFT. As is obvious in the RPN column of
Table 3, failures F8,5, F6,1, and F8,4 are considered
the most critical failures. There are conspicuous dif-
ferences between the generated results between the
other two methods. It is due to the lack of the RPN
index in considering the causal relationships between
the failures in the various stages. Causal relationships
exist between failures in different stages, and a failure
in previous stages may affect other failures in the next
stages. It is essential to recognize and relieve the cru-
cial fajlures in the early stages. Consequently, deter-
mining the causal relationships between failures can
directly relate to other failures in the next stages. It

can be concluded that the conventional RPN index is
not a reliable technique to determine the criticality of
the failures. Furthermore, this behavior is observed in
the least critical failures. In the RPN index failures,
F2,1, F4,3, F9,1, and F9,3 have lower priority than
other failures with notable differences with MSFCM.

In the last step, the MSFCM is compared with con-
ventional FCM, which both of them implement the
Extended Delta-rule as the learning algorithm. In the
conventional FCM, there are no separate internal and
external relationships between the process stages, and
all failures are considered the whole. The purpose is
to compare the impact of the multi-stage approach on
the study with conventional FCM.

After defining scenarios for assessing existent fail-
ures in each system stage, the learning algorithm is
implemented. The implementation of this algorithm
requires two main inputs. The matrix of initial
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Figure 5. MSFCM for the studied case study.

concept values (failures and their SOD values) and the
matrix of initial weights of causal relationships among
concepts (see Appendix) are the main inputs of this
algorithm. In the matrix of initial weights of causal
relationships among concepts, the weights of causal
relationships among failures are determined based on
experts’ opinions (CFT), and the weights of relation-
ships among SOD factors and relevant failure are con-
sidered equal to 1, and the weights of relationships
among SOD factors are considered equal to zero. But,
an initial concept matrix of values is defined based on
each scenario (for each stage); as in this matrix:

e The concepts related to the failures that existed in
the stage under study have the value of 1
(are activated).

o The concept of previous stage failures associated
with the external-stage causal relationships to the
failures of the stage under study have the trained
value of those failures (according to the implemen-
tation of the learning algorithm for the previ-
ous stages).

e The values of concepts related to SOD factors for
existent failures in the stage understudy are the
same as the normalized SOD values (the reason for
using normalized values of the SOD factors is that
the values of FCM concepts must be between zero
and one).

e The values of other concepts are also considered
equal to zero.

Finally, after an iteration of the learning algorithm,
to prevent the excessive impact of the SOD factors, in
the second iteration to next, the weight of causal rela-
tionships among these factors and the failure under
study is considered equal to zero. Then, using the
new matrices of trained values of the concepts and
causal relationships weights, the implementation of
the learning algorithm continues to reach the termin-
ation conditions, such as the required iteration.

After implementing the approach, failures F4,1 and
F2,1 have the highest ranking between the failures and
have nearly identical performance according to
MSFCM. However, in this approach, the failure of
F2,2 has the third-highest rank between failures,
which has different results compared with MSFCM. It
is due to the conventional perspective, which has been
implemented on the FCM. There are no differences
between the least important failures among the two
algorithms. There are other differences between some
failures’ rankings, which exhibits significant differen-
ces between these two approaches. Meanwhile, based
on the experts’ opinion, the MSFCM has the closest
results to the real-world results, and based on experts’
experiences, the MSFCM performance was the best
compared to the other two methods.

Finally, a comparison has been drawn between the
prioritization results of the proposed approach and
traditional FMEA priority score and popular MCDM
methods such as TOPSIS and MOORA (Valipour
et al. 2021). The results have been shown in Table 3.
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Table 3. The generated results based on the proposed approach vs. other ranking methods.

Multi-stage Delta-rule Ranking RPN Ranking Delta-rule Ranking MOORA score Ranking TOPSIS score Ranking
F1,1 0.1674 32 64 1" 0.1186 32 0.1753 10 0.4494 13
F1,2 0.7053 21 72 9 0.6920 18 0.1733 n 0.4483 14
F1,3 0.7053 21 48 17 0.6920 18 0.1534 23 0.3997 21
F1,4 0.6591 25 16 27 0.6591 23 0.1217 27 0.2740 27
F1,5 0.7416 19 98 6 0.7715 12 0.2099 5 0.6253 5
F2,1 0.9539 2 12 29 0.9408 2 0.0946 32 0.1356 32
F2,2 0.9266 4 105 5 0.8867 3 0.2101 4 0.6302 4
F2,3 0.6591 25 24 26 0.6591 23 0.1493 24 0.4588 12
F2,4 0.7922 13 14 28 0.6837 21 0.1144 29 0.2840 26
F3.1 0.9418 3 48 17 0.8507 5 0.1552 22 0.4192 19
F3,2 0.7847 15 63 12 0.7598 14 0.1643 15 0.4260 17
F3,3 0.7847 15 40 21 0.7445 16 0.1485 25 0.3459 25
F4,1 0.9563 1 70 10 0.9618 1 0.1843 8 0.4706 1"
F4,2 0.7474 18 30 25 0.7510 15 0.1305 26 0.2709 28
F4,3 0.8135 10 12 29 0.6879 20 0.1147 28 0.2521 29
F51 0.9165 5 40 21 0.8305 7 0.1571 18 0.4317 15
F5,2 0.6591 25 40 21 0.6591 23 0.1571 17 0.4317 16
F6,1 0.6591 25 160 2 0.6591 23 0.2250 3 0.6488 3
F6,2 0.8126 1" 60 13 0.8123 9 0.1691 13 0.4947 8
F6,3 0.7966 12 60 13 0.7964 10 0.1691 12 0.4947 9
F6,4 0.8522 7 80 7 0.8585 4 0.1890 7 0.5387 7
F7.1 0.7676 17 120 4 0.6751 22 0.2092 6 0.5627 6
F7,2 0.8320 9 75 8 0.7816 1 0.1824 9 0.4755 10
F7.3 0.5134 30 48 17 0.5683 30 0.1574 16 0.3807 24
F8,1 0.6600 23 48 17 0.6591 23 0.1552 21 0.4192 20
F8,2 0.7870 14 54 15 0.7637 13 0.1553 20 0.3860 22
F83 0.8430 8 54 15 0.8164 8 0.1553 19 0.3860 23
F8,4 0.7130 20 147 3 0.7019 17 0.2279 2 0.6963 2
F8,5 0.8830 6 162 1 0.8421 6 0.2299 1 0.7101 1
F9,1 0.5400 29 12 29 0.5961 29 0.1055 30 0.2369 30
F9,2 0.6600 23 35 24 0.6591 23 0.1684 14 0.4239 18
F9,3 0.4480 31 10 32 0.5440 31 0.0966 31 0.1849 31

According to Table 3, F8,5 with the RPN = 162
has been placed in the top priority and F6,1, F8,4
have been a stand in the second and third priority. As
can be seen, since the RPN score, do not consider the
weight of risk factors and relies merely on the multi-
plication of these factors’ values, it failed to distin-
guish the priority of risks. F3,3 and F5,1 have
different S, D and O values while having the same
RPN scores. In this regard, various researchers have
tried to modify or develop the FMEA technique using
other methods such as MCDM techniques. Most of
these, however, failed to preserve the merits of this
traditional technique for the FMEA team, including
compatibility with its opinions and practical applica-
tions. In other words, from the viewpoint of the
FMEA team, a method can be efficacious in the risk
assessment process that not only does not make
unrealistic changes when the weight of risk factors is
applied but also can create more separability among
risk priorities. The results of two popular MCDM
methods in Table 3 show that all of the methods have
made a higher distinction than the traditional FMEA
technique. However, ranking with multi-criteria deci-
sion-making methods has a high correlation with
ranking with RPN (see Table 4). In contrast, the cor-
relation between the proposed method and ranking
based on multi-criteria decisions is very low. This is

Table 4. Correlations between various used ranking methods.

Multi-stage Delta-rule RPN Delta-rule MOORA
RPN 0.227
Delta-rule 0.937 0.350
MOORA 0.159 0.944 0.281
TOPSIS 0.195 0.883 0.320 0.936

because decision-making methods do not take into
account causal relationships between risk factors, so
the score calculated for them is the abstract risk score
without the involvement of other factors. In the real
world, no risk factor is separate from other factors
and factors affect each other, so ranking based on
multi-criteria decision approaches cannot be real.
While fuzzy cognitive mapping can easily consider the
effect of these factors on each other, the reason for
the ranking differences.

Figure 6 represents the generated results to com-
pare them from the separability perspective. In this
figure, the normal value of the RPN index has been
used to rank the results. Although it may have
appropriate performance in generating different sol-
utions at first glance, it has generated very close val-
ues, at least in the three areas. One of the important
factors in analyzing risk factors is vivid ranking
with various amounts that are not close to each
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Figure 6. The dispersion of the generated results based on the various methods.

other. Experts should analyze the results with con-
siderably high accuracy, and the close value of
results can negatively affect the decision-making
validation. The results should increase in a valid
and secure interval to assist decision-makers in hav-
ing a secure decision-making process by analyzing
failures’ ranking. Hence, the RPN factor is not a
reliable method in this case.

On the other hand, both conventional FCM and
MSFCM have an excellent performance in ranking the
failures. Both of them can successfully generate solu-
tions in a considerably safe interval with high separ-
ability. However, at some points, there are differences
in ranking the failures. It is because of the different
logic between these methods. The MSFCM possesses a
potent logic in ranking the failures by considering the
internal and external causal relationships between fail-
ures. As mentioned earlier, in some cases, some fail-
ures in previous stages may have an extremely
conspicuous impact on the other failures in the next
stages, and MSFCM can recognize this important
issue. The more logical FCM, the more accurate the
generated solutions. This strong capacity of the
MSFCM could convince the decision-makers that this
method is highly capable of ranking the failures.

6. Conclusion

An intelligent approach based on cause-and-effect
relationships was proposed to assess and prioritize a
manufacturing unit’s risks in the production process
of automotive brake pads. MSFCM was executed, and
the final values for failures were obtained. The gener-
ated results were compared with the conventional

FCM, with the Extended Delta rule algorithm and the
RPN score for validating the proposed approach. It
was inferred that both conventional FCM and
MSFCM have excellent performance and similarities
in ranking the failures. Both of them can successfully
generate results in a considerably safe interval with
high separability. Also, a comparison was conducted
between the ranking results of both MSFCM and
Delta rule learning algorithms. It was concluded that
both methods’ trend was very close, and both the
highest and lowest failures scores are the same.
Although RPN factor results showed some conformity
with MSFCM and other methods in some areas, it
was found as the unreliable method in this case. The
main feature of this study is to map the processes of
producing the brake pads in risk assessment and ana-
lysis. This map provides the cause-and-effect relation-
ships in risk prioritization. In future endeavors, risks’
reliability and uncertainty environment may be added
to the analysis for better risk assessment.
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Appendix

The Appendix presents the matrix of initial weights of causal relationships among concepts. The weights of causal relationships among failures are determined based on

experts’ opinions (by FMEA CFT).

Appendix. The weight of causal relationships between failures.
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