93 research outputs found

    Ring-enhancing Brain Lesions in a Patient with Advanced Human Immunodeficiency Virus from the Central United States of America

    Get PDF
    Background: Histoplasmosis is an endemic fungus found worldwide. It most commonly causes pulmonary infections. In patients with defects in cellular immunity it can cause disseminated infections including central nervous system infections. Case presentation: We present a case of a 44-year-old with advanced human immunodeficiency virus who presented with neurologic complaints. Magnetic resonance imaging of the brain revealed ring-enhancing brain lesions. He underwent brain biopsy of one of the ring-enhancing lesions and histopathology revealed Histoplasma capsulatum. Conclusion: Ring-enhancing brain lesions due to endemic fungi in patients with advanced HIV are uncommon. Nonetheless, this should remain a diagnostic consideration in endemic areas.D. Matthew Shoemaker (1), Katherine Schwetye (2) ; 1. University of Kansas Medical Center. Assistant Professor, Infectious Diseases. 2. Saint Louis University. Assistant Professor, Pathology.Includes bibliographical reference

    The Iowa Homemaker vol.16, no.3

    Get PDF
    Cover by Dorothy Coe The Way to His Heart by Win Hanssen, page 2 “Don’ts” for the Rushee by Stella Mae Brinkman, page 3 Sally Says, “Swinging Shoulders – Swirling Skirts” by Katherine Hoffman, page 4 Travel With Richard Halliburton by Emma Jean Scudder, page 6 Have a Treasure-Hunt Spread by Louise Peterson, page 7 Vocational Possibilitites, page 8 Our 1936 Graduates at Work by Gay Starrak, page 9 Behind Bright Jackets, page 10 Is Your Room “You”? by Betty Shoemaker, page 11 What’s New in Home Economics, page 12 Do You Keep a Diary?, page 15 Books to Read, page 16 Catt Gown Is Historic, page 18 Dr. Nickell at Iowa State, page 18 Facts on Child Health, page 20 Want to Remember Names?, page 22 Vitamin A Deficiency Test, page 2

    Prospects for detecting gravitational waves at 5 Hz with ground-based detectors

    Get PDF
    We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_\odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.Comment: 5 pages, 6 figures, published in PR

    e-Premier

    Full text link

    Nurses\u27 Alumnae Association Bulletin - Volume 6 Number 9

    Get PDF
    Remember the Relief Fund Welcome! Miss Childs Financial Report Calendar of Coming Events Lest You Forget! Attention Review of the Alumnae Association Meetings Institutional Staff Nurses\u27 Section Report of Staff Activities - 1947-1948 Private Duty Section The White Haven Division Barton Memorial Division Remember the Relief Fund Student Nurses\u27 Activities Jefferson Scores Again The Clara Melville Scholarship Fund Interesting Activities of the Nurses\u27 Home Committee of the Women\u27s Board Exclusive for Nurses Changes in the Maternity Division Gray Lady Musical Therapy Service Memorial Service Honoring Mrs. Bessie Dobson Altemus The Blood Donor Center The Hospital Pharmacy Medical College News Remember the Relief Fund Administrative Staff and Faculty of the School of Nursing Streptomycin Changes in the Staff at Jefferson Hospital Care of the Thoracic Surgical Patient Miscellaneous Items Marriages New Arrivals Deaths The Bulletin Committee Attention, Alumnae New Addresse

    Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4 -mediated Asian soybean rust resistance pathway

    Get PDF
    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82) across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes induced at 12 h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced and empty vector-treated PI459025B plants 14 days after infection (dai) with P. pachyrhizi. This identified genes, including transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated resistance responses. These genes are targets for future P. pachyrhizi resistance research

    The Moon Zoo citizen science project: preliminary results for the Apollo 17 landing site

    Get PDF
    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA’s LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological ‘features of interest’. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production

    Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners

    Get PDF
    Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure

    Assessing the survivability of biomarkers within terrestrial material impacting the lunar surface

    Get PDF
    The history of organic and biological markers (biomarkers) on the Earth is effectively non-existent in the geological record >3.8 Ga ago. Here, we investigate the potential for terrestrial material (i.e., terrestrial meteorites) to be transferred to the Moon by a large impact on Earth and subsequently survive impact with the lunar surface, using the iSALE shock physics code. Three-dimensional impact simulations show that a typical basin-forming impact on Earth can eject solid fragments equivalent to ~10–3 of an impactor mass at speeds sufficient to transfer from Earth to the Moon. Previous modelling of meteorite survivability has relied heavily upon the assumption that peak-shock pressures can be used as a proxy for gauging survival of projectiles and their possible biomarker constituents. Here, we show the importance of considering both pressure and temperature within the projectile, and the inclusion of both shock and shear heating, in assessing biomarker survival. Assuming that they survive launch from Earth, we show that some biomarker molecules within terrestrial meteorites are likely to survive impact with the Moon, especially at the lower end of the range of typical impact velocities for terrestrial meteorites (2.5 km s-1). The survival of larger biomarkers (e.g., microfossils) is also assessed, and we find limited, but significant, survival for low impact velocity and high target porosity scenarios. Thermal degradation of biomarkers shortly after impact depends heavily upon where the projectile material lands, whether it is buried or remains on the surface, and the related cooling timescales. Comparing sandstone and limestone projectiles shows similar temperature and pressure profiles for the same impact velocities, with limestone providing slightly more favourable conditions for biomarker survival
    corecore