196 research outputs found

    Arkansas Cooperative Beef Bull Performance Test 1991

    Get PDF
    Performance testing of beef bulls was initiated to improve productivity of Arkansas beef cattle through breeding. This cooperative testing program provides cattlemen with reliable information for identifying animals with superior breeding value for the traits of production measured in the test. By using the information as a basis for herd sire selection, a breeder can greatly increase the chances of obtaining a bull that will sire rapid-gaining, more efficient, highquality calves. Such calves can increase profits for both the breeder and the feeder. This testing program provides information that is useful to financial institutes in arranging their lending programs and to companies in developing their educational, promotional and marketing programs

    Hypothermic retrograde venous perfusion with adenosine cools the spinal cord and reduces the risk of paraplegia after thoracic aortic clamping

    Get PDF
    AbstractObjective: We evaluated the utility of retrograde venous perfusion to cool the spinal cord and protect neurologic function during aortic clamping. We hypothesized that hypothermic adenosine would preserve the spinal cord during ischemia. Methods: Six swine (group I) underwent thoracic aortic occlusion for 30 minutes at normothermia. Group II animals underwent spinal cooling by retrograde perfusion of the paravertebral veins with hypothermic (4°C) saline solution during aortic occlusion. The spinal cords of group III animals were cooled with a hypothermic adenosine solution in a similar fashion. Intrathecal temperature was monitored and somatosensory evoked potentials assessed the functional status of spinal pathways. Results: Spinal cooling without systemic hypothermia significantly improved neurologic Tarlov scores in group III (4.8 ± 0.2) and group II (3.8 ± 0.4) when compared with group I scores (1.3 ± 0.6) (P < .001). Furthermore, 5 of the 6 animals in group III displayed completely normal neurologic function, whereas only one animal in group II and no animals in group I did (P = .005). Somatosensory evoked potentials were lost 10.6 ± 1.4 minutes after ischemia in group I. In contrast, spinal cooling caused rapid cessation of neural transmission with loss of somatosensory evoked potentials at 6.9 ± 1.2 minutes in group II and 7.0 ± 0.8 minutes in group III (P = .06). Somatosensory evoked potential amplitudes returned to 85% of baseline in group III and 90% of baseline in group II compared with only 10% of baseline in group I (P = .01). Conclusions: We conclude that retrograde cooling of the spinal cord is possible and protects against ischemic injury and that adenosine enhances this effect. The efficacy of this method may be at least partly attributed to a more rapid reduction in metabolic and electrical activity of the spinal cord during ischemia. (J Thorac Cardiovasc Surg 2000;119:588-95

    De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Jatropha curcas </it>L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of <it>J. curcas</it>.</p> <p>Results</p> <p>From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. <it>De novo </it>contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis.</p> <p>Conclusion</p> <p>The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition.</p

    Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.

    Get PDF

    Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin.</p> <p>Results</p> <p>We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events.</p> <p>Conclusions</p> <p>In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.</p
    corecore