16 research outputs found

    Describing the genetic architecture of epilepsy through heritability analysis

    Get PDF
    Epilepsy is a disease with substantial missing heritability; despite its high genetic component, genetic association studies have had limited success detecting common variants which influence susceptibility. In this paper, we reassess the role of common variants on epilepsy using extensions of heritability analysis. Our data set consists of 1258 UK patients with epilepsy, of which 958 have focal epilepsy, and 5129 population control subjects, with genotypes recorded for over 4 million common single nucleotide polymorphisms. Firstly, we show that on the liability scale, common variants collectively explain at least 26% (standard deviation 5%) of phenotypic variation for all epilepsy and 27% (standard deviation 5%) for focal epilepsy. Secondly we provide a new method for estimating the number of causal variants for complex traits; when applied to epilepsy, our most optimistic estimate suggests that at least 400 variants influence disease susceptibility, with potentially many thousands. Thirdly, we use bivariate analysis to assess how similar the genetic architecture of focal epilepsy is to that of non-focal epilepsy; we demonstrate both significant differences (P = 0.004) and significant similarities (P = 0.01) between the two subtypes, indicating that although the clinical definition of focal epilepsy does identify a genetically distinct epilepsy subtype, there is also scope to improve the classification of epilepsy by incorporating genotypic information. Lastly, we investigate the potential value in using genetic data to diagnose epilepsy following a single epileptic seizure; we find that a prediction model explaining 10% of phenotypic variation could have clinical utility for deciding which single-seizure individuals are likely to benefit from immediate anti-epileptic drug therapy

    A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target

    Get PDF
    The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy

    Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus

    Get PDF
    Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo

    Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease

    Get PDF
    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease–associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease

    AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury.

    No full text
    Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury

    Genome-wide analysis of differential RNA editing in epilepsy

    No full text
    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures
    corecore