62 research outputs found

    Spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2

    Get PDF
    We present a precise measurement of the deuteron longitudinal spin asymmetry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q^2 < 1 GeV^2 and 4*10^-5 < x < 2.5*10^-2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.Comment: 17 pages, 10 figure

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    Measurement of the Spin Structure of the Deuteron in the DIS Region

    Full text link
    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4, details adde

    Search for the Phi(1860) Pentaquark at COMPASS

    Full text link
    Narrow Xi-pi+- and Xi-bar+pi+- resonances produced by quasi-real photons have been searched for by the COMPASS experiment at CERN. The study was stimulated by the recent observation of an exotic baryonic state decaying into Xi-pi-, at a mass of 1862 MeV, interpreted as a pentaquark. While the ordinary hyperon states Xi(1530)^0 and Xi-bar(1530)^0 are clearly seen, no exotic baryon is observed in the data taken in 2002 and 2003.Comment: 10 pages, 5 figure

    NQRS Data for H2INaO4 [INaO3·H2O] (Subst. No. 2259)

    No full text

    Determination of Damping Properties of an Elongated Plate with an Integral Damping Coating on the Base of Studying Complex Eigenfrequencies

    No full text
    © 2020, Allerton Press, Inc. We describe the structure of a perspective integral damping coating consisting (with respect to the thickness) of two layers of a viscoelastic material with a thin reinforcing layer in-between. We propose a four-layer finite element model with fourteen degrees of freedom for a plate with a mentioned damping coating. This model allows us to take into account the effect of transversal compression of damping layers under high-frequency vibrations of the plate. For determining some lower complex modes and frequencies of free vibrations of the damped plate, we solve a generalized complex eigenvalue problem using the method of iterations in a subspace

    COMPLEX EIGENFREQUENCIES AND DAMPING PROPERTIES OF AN ELONGATED PLATE WITH AN INTEGRAL DAMPING COATING

    No full text
    © 2020, Pleiades Publishing, Ltd. Abstract: This paper considers the classical methods of surface damping of bending vibrations of thin-walled structures and a promising integral version of a damping coating consisting of two layers of a material with pronounced viscoelastic properties separated by a thin reinforcing layer of a high modulus material. A finite element with 14 degrees of freedom for modeling an elongated plate with the specified damping coating has been developed with consideration of the transverse compression of damping layers under high-frequency vibrations of the plate. The generalized problem of complex eigenvalues in the lower part of the spectrum of complex modes and frequencies of free vibrations of a damped plate is solved by the subspace iteration method taking into account the frequency dependence of the dynamic elastic moduli of the material. The damping properties of the plate are determined from the imaginary parts of the complex eigenfrequencies and the relative energy dissipation at resonance
    corecore