670 research outputs found

    Atitudes com relação à polícia em uma favela no sul do Brasil

    Get PDF
    Em pesquisa realizada pelo autor e mais quatro colegas na maior favela da cidade de Porto Alegre foi detectada uma atitude bastante consistente com relação à polícia: ela é temida e odiada pela grande maioria ao contrário da gangue local que era muito integrada e respeitada pela comunidade. O objetivo do artigo é portanto tentar mostrar as razões desse paradoxo.Research carried out by the author and four colleagues in the largest slum (favela) in the city of Porto Alegre, showed a consistency in attitudes toward the police: they were feared and desliked by most people. Meanwhile, the local gangue was well integrated and trusted by the community. The objective of this article is to show the reasons for this paradox

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    3′-End Sequencing for Expression Quantification (3SEQ) from Archival Tumor Samples

    Get PDF
    Gene expression microarrays are the most widely used technique for genome-wide expression profiling. However, microarrays do not perform well on formalin fixed paraffin embedded tissue (FFPET). Consequently, microarrays cannot be effectively utilized to perform gene expression profiling on the vast majority of archival tumor samples. To address this limitation of gene expression microarrays, we designed a novel procedure (3′-end sequencing for expression quantification (3SEQ)) for gene expression profiling from FFPET using next-generation sequencing. We performed gene expression profiling by 3SEQ and microarray on both frozen tissue and FFPET from two soft tissue tumors (desmoid type fibromatosis (DTF) and solitary fibrous tumor (SFT)) (total n = 23 samples, which were each profiled by at least one of the four platform-tissue preparation combinations). Analysis of 3SEQ data revealed many genes differentially expressed between the tumor types (FDR<0.01) on both the frozen tissue (∼9.6K genes) and FFPET (∼8.1K genes). Analysis of microarray data from frozen tissue revealed fewer differentially expressed genes (∼4.64K), and analysis of microarray data on FFPET revealed very few (69) differentially expressed genes. Functional gene set analysis of 3SEQ data from both frozen tissue and FFPET identified biological pathways known to be important in DTF and SFT pathogenesis and suggested several additional candidate oncogenic pathways in these tumors. These findings demonstrate that 3SEQ is an effective technique for gene expression profiling from archival tumor samples and may facilitate significant advances in translational cancer research

    Decreased venous thrombosis with an oral inhibitor of P selectin

    Get PDF
    BackgroundP-selectin inhibition with protein therapeutics such as antibodies or soluble ligands given intravenously can decrease thrombosis in a mouse ligation model of venous thrombosis. In this study, we hypothesized that oral inhibition of P selectin with a novel oral nonprotein inhibitor (PSI-697) would decrease thrombosis and circulating microparticle populations. This study evaluated the effects on thrombosis and circulating microparticle populations in this murine venous thrombosis model.MethodsMice underwent inferior vena cava ligation to induce thrombosis. Mice with high circulating level of P selectin, Delta Cytoplasmic Tail (^CT), mice gene-deleted for both E- and P-selectin knockout (EPKO), and wild-type C57BL/6 mice (WT) were studied without and with administration of PSI-697 in food (100 mg/kg daily) from 2 days before thrombosis until the end of the study. Animals were killed 2 and 6 days later. Evaluations included thrombus weight (TW), vein wall morphometrics, microparticle quantification by using fluorescence-activated cell sorter analysis, and vein wall enzyme-linked immunosorbent assays for interleukin (IL)-10, P selectin, and monocyte chemotactic protein 1.ResultsPSI-697 significantly decreased TW in WT and ^CT mice, with a treated vs nontreated TW of 132 ± 24 vs 228 ± 29 × 10−4 g (P = .014) and 166 ± 19 vs 281 ± 16 × 10−4 g (P = .001), respectively. At day 6, the effect was significant only in the ^CT group (P < .05). Drug therapy at day 2 significantly increased vein wall monocytes in WT mice and increased monocytes and total inflammatory cells in ^CT animals. A significant decrease in neutrophils and total inflammatory cells was seen in EPKO mice at day 2 with therapy. Therapy significantly increased platelet-derived microparticles and total microparticles in ^CT mice on day 2. Changes in treated WT and treated EPKO animals were not significant compared with respective vehicle treatments at day 2. On day 6, therapy significantly decreased total microparticles in EPKO animals. Vein wall expression of IL-10 increased in all groups with therapy at day 2 (n = 18) and was significantly increased in WT (2687.5 ± 903 pg/mL vs 636 ± 108 pg/mL total protein; P = .038) and ^CT (2078 ± 295 pg/mL vs 432 ± 62 pg/mL total protein; P = .001) mice. Therapy significantly decreased vein wall P selectin, monocyte chemotactic protein 1, and IL-10 levels at day 6.ConclusionsPSI-697 decreased thrombosis. P-selectin inhibition allowed vein wall inflammatory cell extravasation in this model of complete ligation. Circulating microparticles (platelet-derived microparticles and total microparticles) increased with P-selectin inhibition, possibly because of decreased consumption into the thrombus. In summary, the oral administration of an inhibitor to P selectin provides significant TW reduction.Clinical RelevanceDeep venous thrombosis is a significant national health problem in the general population. The average annual incidence of deep venous thrombosis is approximately 250,000 cases per year. The selectin family of adhesion molecules is thought to be largely responsible for the initial attachment and rolling of leukocytes on stimulated vascular endothelium. Recent studies have explored the possible therapeutic implications of P-selectin inhibition to modulate venous thrombosis. For example, prophylactic dosing of a recombinant P-selectin ligand decreases venous thrombosis in a dose-dependent fashion in both feline and nonhuman primate animal models. Additionally, treatment of 2-day iliac thrombi with a recombinant protein, P-selectin inhibitor, significantly improves vein reopening in nonhuman primates. It is interesting to note that P-selectin inhibition decreases thrombosis without adverse anticoagulation. On the basis of the results from these previous studies, the use of P-selectin antagonism is a logical therapeutic approach to treat venous thrombosis. All inhibitors developed to date are either proteins or small molecules with low oral bioavailability that require intravenous or subcutaneous injection. This study evaluates, for the first time, a novel orally bioavailable inhibitor of P-selectin (PSI-697)
    corecore