356 research outputs found
Code 672 observational science branch computer networks
In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail
The Surface Wave Dynamics Experiment (SWADE)
SWADE was developed to study the dynamics of the wave field development in the open ocean with the following specific objectives: (1) to understand the development of the wave directional spectrum under various conditions; (2) to determine the effect of waves on the air/sea transfers of momentum, heat, and mass; (3) to determine breaking distributions as a function of sea state, wind, and boundary stability; and (4) to provide data and analyses for ERS-1 validation. The experiment is designed for the winter of 1990 to 1991. Four buoys will be deployed for 6 months starting October 1990 and ending March 1991. During that time period, three intensive periods of 2 weeks duration each will be selected for frequent aircraft flights for wave data collection to satisfy scientific studies, as well as ERS-1 validation needs
Designing citizen science tools for learning: lessons learnt from the iterative development of nQuire
This paper reports on a 4-year research and development case study about the design of citizen science tools for inquiry learning. It details the process of iterative pedagogy-led design and evaluation of the nQuire toolkit, a set of web-based and mobile tools scaffolding the creation of online citizen science investigations. The design involved an expert review of inquiry learning and citizen science, combined with user experience studies involving more than 200 users. These have informed a concept that we have termed ‘citizen inquiry’, which engages members of the public alongside scientists in setting up, running, managing or contributing to citizen science projects with a main aim of learning about the scientific method through doing science by interaction with others. A design-based research (DBR) methodology was adopted for the iterative design and evaluation of citizen science tools. DBR was focused on the refinement of a central concept, ‘citizen inquiry’, by exploring how it can be instantiated in educational technologies and interventions. The empirical evaluation and iteration of technologies involved three design experiments with end users, user interviews, and insights from pedagogy and user experience experts. Evidence from the iterative development of nQuire led to the production of a set of interaction design principles that aim to guide the development of online, learning-centred, citizen science projects. Eight design guidelines are proposed: users as producers of knowledge, topics before tools, mobile affordances, scaffolds to the process of scientific inquiry, learning by doing as key message, being part of a community as key message, every visit brings a reward, and value users and their time
Experimental Bounds on Masses and Fluxes of Nontopological Solitons
We have re-analyzed the results of various experiments which were not
originally interested as searches for the Q-ball or the Fermi-ball. Based on
these analyses, in addition to the available data on Q-balls, we obtained
rather stringent bounds on flux, mass and typical energy scale of Q-balls as
well as Fermi-balls. In case these nontopological solitons are the main
component of the dark matter of the Galaxy, we found that only such solitons
with very large quantum numbers are allowed. We also estimate how sensitive
future experiments will be in the search for Q-balls and Fermi-balls.Comment: 19 pages, 7 eps figures, RevTeX, psfig.st
Why do authoritarian regimes provide public goods? Policy communities, external shocks and ideas in China’s rural social policy making
Recent research on authoritarian regimes argues that they provide public goods in order to prevent rebellion. This essay shows that the ‘threat of rebellion’ alone cannot explain Chinese party-state policies to extend public goods to rural residents in the first decade of the twenty-first century. Drawing on theories of policy making, it argues that China’s one-party regime extended public goods to the rural population under the influence of ideas and policy options generated by policy communities of officials, researchers, international organisations and other actors. The party-state centre adopted and implemented these ideas and policy options when they provided solutions to external shocks and supported economic development goals. Explanations of policies and their outcomes in authoritarian political systems need to include not only ‘dictators’ but also other actors, and the ideas they generate
The intertwined geopolitics and geoeconomics of hopes/fears:China’s triple economic bubbles and the ‘One Belt One Road’ imaginary
This paper adopts a discursive-cum-material approach to China's new 'One Belt One Road' (OBOR) geostrategic imaginary and its development through the intertwining of geopolitics and geoeconomics of hopes and fears. It first contextualizes this development after the 2008 financial crisis when China promoted a vast stimulus package that inflated existing property and infrastructure bubbles and fuelled another in finance. Resulting debates over crisis management enabled an incoming President Xi to articulate a set of hope-based discourses that came to include 'China Dream', 'New Normal' and the OBOR. Familiar cartographic statecraft techniques and novel spatial metaphors were used to promote the OBOR's allegedly 'win-win' strategy discursively. The OBOR imaginary was translated materially, and importantly, into policies that promoted a grand transregional 'spatial fix' to postpone China's over-accumulation crises. This strategy is consolidating a China-oriented infrastructural mode of growth in production, finance and security. As this absorbs ever more productive and financial capital, we see the emergence of contradictions, antagonisms and conflicts, especially in the use of bilateral loan-debt contractuality to appropriate strategic infrastructure. The paper concludes with a call for an affective turn examining the intertwining of geoeconomics and geopolitics in the analysis of transregional spatial fixes
Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment
The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive
to nuclearites and Q-balls, which could be present in the cosmic radiation as
possible Dark Matter components. It was sensitive also to strangelets, i.e.
small lumps of Strange Quark Matter predicted at such altitudes by various
phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors
exposed for 4.22 years showed no candidate event. New upper limits on the flux
of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null
result also restricts models for strangelets propagation through the Earth
atmosphere.Comment: 14 pages, 11 EPS figure
Inter-Rater Reliability of Preprocessing EEG Data: Impact of Subjective Artifact Removal on Associative Memory Task ERP Results
The processing of EEG data routinely involves subjective removal of artifacts during a preprocessing stage. Preprocessing inter-rater reliability (IRR) and how differences in preprocessing may affect outcomes of primary event-related potential (ERP) analyses has not been previously assessed. Three raters independently preprocessed EEG data of 16 cognitively healthy adult participants (ages 18–39 years) who performed a memory task. Using intraclass correlations (ICCs), IRR was assessed for Early-frontal, Late-frontal, and Parietal Old/new memory effects contrasts across eight regions of interest (ROIs). IRR was good to excellent for all ROIs; 22 of 26 ICCs were above 0.80. Raters were highly consistent in preprocessing across ROIs, although the frontal pole ROI (ICC range 0.60–0.90) showed less consistency. Old/new parietal effects had highest ICCs with the lowest variability. Rater preprocessing differences did not alter primary ERP results. IRR for EEG preprocessing was good to excellent, and subjective rater-removal of EEG artifacts did not alter primary memory-task ERP results. Findings provide preliminary support for robustness of cognitive/memory task-related ERP results against significant inter-rater preprocessing variability and suggest reliability of EEG to assess cognitive-neurophysiological processes multiple preprocessors are involved
Mutation in the Gene Encoding Ubiquitin Ligase LRSAM1 in Patients with Charcot-Marie-Tooth Disease
Charcot-Marie-Tooth disease (CMT) represents a family of related sensorimotor neuropathies. We studied a large family from a rural eastern Canadian community, with multiple individuals suffering from a condition clinically most similar to autosomal recessive axonal CMT, or AR-CMT2. Homozygosity mapping with high-density SNP genotyping of six affected individuals from the family excluded 23 known genes for various subtypes of CMT and instead identified a single homozygous region on chromosome 9, at 122,423,730–129,841,977 Mbp, shared identical by state in all six affected individuals. A homozygous pathogenic variant was identified in the gene encoding leucine rich repeat and sterile alpha motif 1 (LRSAM1) by direct DNA sequencing of genes within the region in affected DNA samples. The single nucleotide change mutates an intronic consensus acceptor splicing site from AG to AA. Direct analysis of RNA from patient blood demonstrated aberrant splicing of the affected exon, causing an obligatory frameshift and premature truncation of the protein. Western blotting of immortalized cells from a homozygous patient showed complete absence of detectable protein, consistent with the splice site defect. LRSAM1 plays a role in membrane vesicle fusion during viral maturation and for proper adhesion of neuronal cells in culture. Other ubiquitin ligases play documented roles in neurodegenerative diseases. LRSAM1 is a strong candidate for the causal gene for the genetic disorder in our kindred
Biodiversity in urban gardens: assessing the accuracy of citizen science data on garden hedgehogs
Urban gardens provide a rich habitat for species that are declining in rural areas. However, collecting data in gardens can be logistically-challenging, time-consuming and intrusive to residents. This study examines the potential of citizen scientists to record hedgehog sightings and collect habitat data within their own gardens using an online questionnaire. Focussing on a charismatic species meant that the number of responses was high (516 responses were obtained in 6 weeks, with a ~ 50:50% split between gardens
with and without hedgehog sightings). While many factors commonly thought to influence hedgehog
presence (e.g. compost heaps) were present in many hedgehog-frequented gardens, they were not discriminatory as they were also found in gardens where hedgehogs were not seen. Respondents were most likely to have seen hedgehogs in their garden if they had also seen hedgehogs elsewhere in their neighbourhood. However, primary fieldwork using hedgehog ‘footprint tunnels’ showed that hedgehogs were found to be just as prevalent in gardens in which hedgehogs had previously been reported as gardens where they had not been reported. Combining these results indicates that hedgehogs may be more common in urban and semi-urban gardens than previously believed, and that casual volunteer records of hedgehogs may be influenced more by the observer than by habitat preferences of the animal. When verified, volunteer records can provide useful information, but care is needed in interpreting these data
- …