30 research outputs found

    Review and reinterpretation of Rio Grande silvery minnow reproductive ecology using egg biology, life history, hydrology, and geomorphology information

    Get PDF
    To inform management actions to recover the endangered Rio Grande silvery minnow (Hybognathus amarus, RGSM), we (1) calculated the terminal settling velocities of newly expelled and water-hardened RGSM eggs for the observed range of suspended sediment concentrations and water temperatures in the Rio Grande, New Mexico, USA, and (2) reviewed RGSM reproductive ecology in the context of egg biology, the species’ life history, and the historic and contemporary hydrology and geomorphology of the Rio Grande. Results show that in a naturally functioning riverine environment, the location and timing of spawning, the ontogenic stage of egg development, and habitat-specific differences in sediment and temperature that influence egg-settling rates interact to (1) prevent egg suffocation, (2) promote egg entrainment in clear, warm, productive floodplain habitats, and (3) limit downstream population displacement. Our research suggests that the RGSM is primarily a demersal, floodplain spawning species that evolved eggs that are secondarily buoyant in high-sediment environments rather than a main channel, pelagic broadcast-spawning species with an evolved long-distance, downstream drift phase, as previously reported. The current high magnitude of egg drift is hypothesized to be an artefact of contemporary river management and channelization, leading to reduced lateral connectivity, floodplain abandonment, and habitat degradation. Conservation actions implemented to restore historic channel form and reconnect low-velocity backwater and floodplain habitats are recommended. In the absence of a documented upstream migration of adult fish, removal of barriers to a presumed upstream movement is unlikely to provide immediate benefits to RGSM

    Efectos de la salinidad sobre la gravedad específica y la viabilidad de huevos de una carpa norteamericana (Ciprinidae)

    Get PDF
    The influence of salinity on survival, specific gravity, and size of eggs of the endangered Hybognathus amarus (Rio Grande silvery minnow) was studied to provide insight into factors affecting their potential dispersal and fate. Under low salinity conditions egg specific gravity declined significantly in the first hour after spawning as the perivitelline space of the egg filled with water. Egg specific gravity achieved a minimum value approximately 1 h post-spawning and remained approximately constant until hatching, which occurred near 48 h post-spawning at 20°C. Specific gravity of the egg depended on the salinity of the water surrounding the egg: hardened eggs changed rapidly in diameter and specific gravity when exposed to water of higher salinity. Size and specific gravity of H. amarus eggs also differed when the eggs were incubated in different groundwater sources. Experiments indicated that calcium chloride saline solution had a greater effect on egg specific gravity and size than did solutions of sodium or potassium chlorides. Survival of H. amarus eggs declined sharply at salinity greater than 3 (practical salinity units, PSU) and was only 5% at a salinity of 8. Habitat restoration to benefit H. amarus should consider the salinity of habitats in which eggs incubate.El efecto de la salinidad sobre la supervivencia, gravedad específica y talla de los huevos del ciprínido puesto en peligro de extinción, Hybognathus amarus, fue estudiado para proporcionar información sobre los factores que afectan la dispersión y el destino de los huevos. Bajo condiciones de salinidad baja la gravedad específica del huevo disminuyó de forma significativa durante la primera hora después de la puesta, a medida que el espacio del perivitelino del huevo se fue llenando de agua. la gravedad específica del huevo alcanzó un valor mínimo 1 hora después de la puesta y quedó aproximadamente constante hasta eclosión, que ocurrió alrededor de 48 horas tras la puesta a 20˚C. la gravedad específica del huevo dependió de la salinidad del agua que le rodeaba. los huevos con corion endurecido cambiaron rápidamente en diámetro y gravedad específica cuando fueron expuestos a agua de salinidad más alta. El tamaño y la gravedad específica de los huevos de H. amarus también se diferenciaron cuando los huevos fueron incubados en diferentes fuentes de agua subterránea. Los experimentos indicaron que la solución salina del cloruro de calcio tuvo un mayor efecto sobre la gravedad específica del huevo que las soluciones de los cloruros del sodio o del potasio. Expuestos a soluciones de salinidad de más de 3 (PsU), la supervivencia de los huevos de H. amarus disminuyó claramente, bajando a sólo el 5% en la solución de 8. la restauración del hábitat con el objetivo de beneficiar a H. amarus debe considerar la salinidad de los hábitats en los cuales el huevo incuba

    Synthesis and pharmacological profiling of analogues of benzyl quinolone carboxylic acid (BQCA) as allosteric modulators of the M1 muscarinic receptor

    Get PDF
    Established therapy in Alzheimer’s disease involves potentiation of the endogenous orthosteric ligand, acetylcholine, at the M1 muscarinic receptors found in higher concentrations in the cortex and hippocampus. Adverse effects, due to indiscriminate activation of other muscarinic receptor subtypes, are common. M1 muscarinic positive allosteric modulators/allosteric agonists such as BQCA offer an attractive solution, being exquisitely M1-selective over other muscarinic subtypes. A common difficulty with allosteric ligands is interpreting SAR, based on composite potency values derived in the presence of fixed concentration of agonist. In reality these values encompass multiple pharmacological parameters, each potentially and differentially sensitive to structural modification of the ligand. We report novel BQCA analogues which appear to augment ligand affinity for the receptor (pKB), intrinsic efficacy (τB), and both binding (α) and functional (β) cooperativity with acetylcholine. Ultimately, development of such enriched SAR surrounding allosteric modulators will provide insight into their mode of action

    Neutrino Education, Outreach, and Communications Activities: Captivating Examples from IceCube

    Get PDF

    Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?

    Full text link
    peer reviewedBackground Aboveground, plants release volatile organic compounds (VOCs) that act as chemical signals between neighbouring plants. It is now well documented that VOCs emitted by the roots in the plant rhizosphere also play important ecological roles in the soil ecosystem, notably in plant defence because they are involved in interactions between plants, phytophagous pests and organisms of the third trophic level. The roles played by root-emitted VOCs in between- and within-plant signalling, however, are still poorly documented in the scientific literature. Scope Given that (1) plants release volatile cues mediating plant-plant interactions aboveground, (2) roots can detect the chemical signals originating from their neighbours, and (3) roots release VOCs involved in biotic interactions belowground, the aim of this paper is to discuss the roles of VOCs in between- and within-plant signalling belowground. We also highlight the technical challenges associated with the analysis of root-emitted VOCs and the design of experiments targeting volatile-mediated root-root interactions. Conclusions We conclude that root-root interactions mediated by volatile cues deserve more research attention and that both the analytical tools and methods developed to study the ecological roles played by VOCs in interplant signalling aboveground can be adapted to focus on the roles played by root-emitted VOCs in between- and within-plant signalling

    Review and reinterpretation of Rio Grande silvery minnow reproductive ecology using egg biology, life history, hydrology, and geomorphology information

    Get PDF
    To inform management actions to recover the endangered Rio Grande silvery minnow (Hybognathus amarus, RGSM), we (1) calculated the terminal settling velocities of newly expelled and water-hardened RGSM eggs for the observed range of suspended sediment concentrations and water temperatures in the Rio Grande, New Mexico, USA, and (2) reviewed RGSM reproductive ecology in the context of egg biology, the species’ life history, and the historic and contemporary hydrology and geomorphology of the Rio Grande. Results show that in a naturally functioning riverine environment, the location and timing of spawning, the ontogenic stage of egg development, and habitat-specific differences in sediment and temperature that influence egg-settling rates interact to (1) prevent egg suffocation, (2) promote egg entrainment in clear, warm, productive floodplain habitats, and (3) limit downstream population displacement. Our research suggests that the RGSM is primarily a demersal, floodplain spawning species that evolved eggs that are secondarily buoyant in high-sediment environments rather than a main channel, pelagic broadcast-spawning species with an evolved long-distance, downstream drift phase, as previously reported. The current high magnitude of egg drift is hypothesized to be an artefact of contemporary river management and channelization, leading to reduced lateral connectivity, floodplain abandonment, and habitat degradation. Conservation actions implemented to restore historic channel form and reconnect low-velocity backwater and floodplain habitats are recommended. In the absence of a documented upstream migration of adult fish, removal of barriers to a presumed upstream movement is unlikely to provide immediate benefits to RGSM

    Long-term fish community response to a reach-scale stream restoration

    No full text
    At a global scale, aquatic ecosystems are being altered by human activities at a greater rate than at any other time in history. In recent years, grassroots efforts have generated interest in the restoration of degraded or destroyed aquatic habitats, especially small wetlands and streams where such projects are feasible with local resources. We present ecological management lessons learned from 17 years of monitoring the fish community response to the channel relocation and reach-level restoration of Juday Creek, a 3rd-order tributary of the St. Joseph River in Indiana, USA. The project was designed to increase habitat complexity, reverse the effects of accumulated fine sediment (< 2 mm diameter), and mitigate for the impacts of a new golf course development. The 1997 restoration consisted of new channel construction within two reaches of a 1.2-km section of Juday Creek that also contained two control reaches. A primary social goal of the golf course development and stream restoration was to avoid harm to the non-native brown trout fishery, as symbolic of community concerns for the watershed. Our long-term monitoring effort revealed that, although fine sediment increased over time in the restored reaches, habitat conditions have promoted the resurgence of native fish species. Since restoration, the fish assemblage has shifted from non-native Salmonidae (brown trout, rainbow trout) to native Centrarchidae (rock bass, largemouth bass, smallmouth bass). In addition, native, nongame species have remained stable or have increased in population abundance (e.g., Johnny darter, mottled sculpin). The results of this study demonstrate the value of learning from a restoration project to adjust management decisions that enhance environmental quality
    corecore