84 research outputs found

    Magentic-Field Induced Quantum Phase Transition and Critical Behavior in a Gapped Spin System TlCuCl3_3

    Full text link
    Magnetization measurements were performed on TlCuCl3_3 with gapped ground state. The critical density and the magnetic phase diagram were obtained. The interacting constant was obtained as U/kB=313U/k_{\rm B} = 313 K. The experimental phase boundary for T<5T < 5 K agrees perfectly with the magnon BEC theory based on the Hartree-Fock approximation with realistic dispersion relations and U/kB=320U/k_{\rm B} = 320 K. The exponent ϕ\phi obtained with all the data points for T<5T < 5 K is ϕ=1.99\phi = 1.99, which is somewhat larger than theoretical exponent ϕBEC=3/2\phi_{\rm BEC} =3/2. However, it was found that the exponent converges at ϕBEC=3/2\phi_{\rm BEC} =3/2 with decreasing fitting window.Comment: 2 pages, 2 figures, Submitted to Proceedings of International Conference on Magnetism (ICM2006

    Field-Induced Magnetic Order and Simultaneous Lattice Deformation in TlCuCl3

    Full text link
    We report the results of Cu and Cl nuclear magnetic resonance experiments (NMR) and thermal expansion measurements in magnetic fields in the coupled dimer spin system TlCuCl3. We found that the field-induced antiferromagnetic transition as confirmed by the splitting of NMR lines is slightly discontinuous. The abrupt change of the electric field gradient at the Cl sites, as well as the sizable change of the lattice constants, across the phase boundary indicate that the magnetic order is accompanied by simultaneous lattice deformation.Comment: 4 pages, 5 figure

    Microscopic model for the magnetization plateaus in NH4CuCl3

    Full text link
    A simple model consisting of three distinct dimer sublattices is proposed to describe the magnetism of NH4CuCl3. It explains the occurrence of magnetization plateaus only at 1/4 and 3/4 of the saturation magnetization. The field dependence of the excitation modes observed by ESR measurements is also explained by the model. The model predicts that the magnetization plateaus should disappear under high pressure.Comment: 4 pages, 5 figures, REVTeX

    Uniaxial pressure dependencies of the phase boundary of TlCuCl_3

    Full text link
    We present a thermal expansion and magnetostriction study of TlCuCl_3, which shows a magnetic-field induced transition from a spin gap phase to a Neel ordered phase. Using Ehrenfest relations we derive huge and strongly anisotropic uniaxial pressure dependencies of the respective phase boundary, e.g. the transition field changes by about ±185\pm 185 GPa depending on the direction of uniaxial pressure.Comment: 2 pages, e figures; presented at SCES200

    Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3

    Full text link
    The magnetic properties of the interacting dimer system TlCuCl3 are investigated within a bond-operator formulation. The observed field-induced staggered magnetic order perpendicular to the field is described as a Bose condensation of magnons which are linear combinations of dimer singlet and triplet modes. This technique accounts for the magnetization curve and for the field dependence of the magnon dispersion curves observed by high-field neutron scattering measurements.Comment: 4 pages, 4 figures, REVTeX

    Observation of Field-Induced Transverse N\'{e}el Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering experiments have been performed on the spin gap system TlCuCl3_3 in magnetic fields parallel to the bb-axis. The magnetic Bragg peaks which indicate the field-induced N\'{e}el ordering were observed for magnetic field higher than the gap field Hg5.5H_{\rm g}\approx 5.5 T at Q=(h,0,l)Q=(h, 0, l) with odd ll in the aca^*-c^* plane. The spin structure in the ordered phase was determined. The temperature and field dependence of the Bragg peak intensities and the phase boundary obtained were discussed in connection with a recent theory which describes the field-induced N\'{e}el ordering as a Bose-Einstein condensation of magnons.Comment: 4 pages, 5 eps figures, jpsj styl

    Doping-dependent magnetization plateaux in p-merized Hubbard chains

    Get PDF
    We study zero-temperature Hubbard chains with periodically modulated hopping at arbitrary filling n and magnetization m. We show that the magnetization curves have plateaux at certain values of m which depend on the periodicity p and the filling. At commensurate filling n a charge gap opens and then magnetization plateaux correspond to fully gapped situations. However, plateaux also arise in the magnetization curves at fixed n between the commensurate values and then the plateau-value of of m depends continuously on n and can thus also become irrational. In particular for the case of dimerized hopping (p=2) and fixed doping we find that a plateau appears at m=1-n. In this case, there is still a gapless mode on the plateau leading to thermodynamic behavior which is different from a completely gapped situation.Comment: 9 pages REVTeX, 3 PostScript figures included using psfig.sty; this is the final version to appear in Phys. Lett. A; substantial changes: Lanczos part removed to gain space for further explanations (refer to original version for details on the numerics

    Theoretical analysis of the experiments on the double-spin-chain compound -- KCuCl3_3

    Full text link
    We have analyzed the experimental susceptibility data of KCuCl3_3 and found that the data are well-explained by the double-spin-chain models with strong antiferromagnetic dimerization. Large quantum Monte Carlo calculations were performed for the first time in the spin systems with frustration. This was made possible by removing the negative-sign problem with the use of the dimer basis that has the spin-reversal symmetry. The numerical data agree with the experimental data within 1% relative errors in the whole temperature region. We also present a theoretical estimate for the dispersion relation and compare it with the recent neutron-scattering experiment. Finally, the magnitude of each interaction bond is predicted.Comment: 4 pages, REVTeX, 5 figures in eps-file

    Magnetization plateaus in antiferromagnetic-(ferromagnetic)_{n} polymerized S=1/2 XXZ chains

    Get PDF
    The plateau-non-plateau transition in the antiferromagnetic-(ferromagnetic)n_{n} polymerized S=1/2S=1/2 XXZ chains under the magnetic field is investigated. The universality class of this transition belongs to the Brezinskii-Kosterlitz-Thouless (BKT) type. The critical points are determined by level spectroscopy analysis of the numerical diagonalization data for 4p134 \leq p \leq 13 where p(n+1)p(\equiv n+1) is the size of a unit cell. It is found that the critical strength of ferromagnetic coupling decreases with pp for small pp but increases for larger enough pp. It is also found that the plateau for large pp is wide enough for moderate values of exchange coupling so that it should be easily observed experimentally. This is in contrast to the plateaus for p=3p = 3 chains which are narrow for a wide range of exchange coupling even away from the critical point

    The Origin of Magnetic Interactions in Ca3Co2O6

    Full text link
    We investigate the microscopic origin of the ferromagnetic and antiferromagnetic spin exchange couplings in the quasi one-dimensional cobalt compound Ca3Co2O6. In particular, we establish a local model which stabilizes a ferromagnetic alignment of the S=2 spins on the cobalt sites with trigonal prismatic symmetry, for a sufficiently strong Hund's rule coupling on the cobalt ions. The exchange is mediated through a S=0 cobalt ion at the octahedral sites of the chain structure. We present a strong coupling evaluation of the Heisenberg coupling between the S=2 Co spins on a separate chain. The chains are coupled antiferromagnetically through super-superexchange via short O-O bonds.Comment: 5 Pages, 3 Figures; added anisotropy term in eq. 9; extended discussion of phase transitio
    corecore