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The plateau-non-plateau transition in the antiferromagnetic-(ferromagnetic)n polymerized S =
1/2 XXZ chains under the magnetic field is investigated. The universality class of this transition
belongs to the Brezinskii-Kosterlitz-Thouless (BKT) type. The critical points are determined by
level spectroscopy analysis of the numerical diagonalization data for 4 ≤ p ≤ 13 where p(≡ n+1)
is the size of a unit cell. It is found that the critical strength of ferromagnetic coupling decreases
with p for small p but increases for larger enough p. It is also found that the plateau for large
p is wide enough for moderate values of exchange coupling so that it should be easily observed
experimentally. This is in contrast to the plateaus for p = 3 chains which are narrow for a wide
range of exchange coupling even away from the critical point.

KEYWORDS: magnetization plateau, level spectroscopy, exact diagonalization, BKT transition, twisted boundary

condition

§1. Introduction

Magnetization plateaus in one dimensional Heisenberg
chains are attracting much attention as the field induced
spin gap states. On the plateau, some spins are partly
quenched by the magnetic field while the remaining spins
form a spin gap state.2, 7, 3, 4, 1, 5, 6, 8, 9, 10, 11, 12, 13) It is evi-
dent that such magnetization plateaus can be realized in
various non-homogeneous Heisenberg chains. Oshikawa,
Yamanaka and Affleck1) proposed the necessary condi-
tion for the magnetization plateaus as p(S − mz) = q ≡

integer where p is the periodicity of the magnetic ground
state in the thermodynamic limit, S is the magnitude of
the spin, and mz is the magnetization per site.

In this context, the spin chains consisting of pe-
riodic arrays of ferromagnetic and antiferromagnetic
bonds have been widely investigated. The S = 1/2
ferromagnetic-antiferromagnetic alternating chain has a
spin gap ground state14, 15, 16) for arbitrary values of
coupling constants. This state can be regarded as the
plateau state with zero magnetization (p = 2, S =
1/2, q = 1 and mz = 0). In the isotropic case, this
energy gap survives as the well-known Haldane gap even
if the strength of the ferromagnetic bonds j is infinite.14)

There appears a magnetization plateau in the magneti-
zation curve of the S = 1/2 ferromagnetic-ferromagnetic-
antiferromagnetic trimerized chain at 1/3 of the satura-
tion magnetization (p = 3, S = 1/2, q = 1 and mz =
1/6).2) In this case, Kitazawa and Okamato9) have shown
that the plateau vanishes by the Brezinskii-Kosterlitz-
Thouless (BKT) type transition for j ≥ jc ≃ 15.4 where
the energy unit is the strength of the antiferromagnetic
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bonds.
In the present work, we investigate the plateau-non-

plateau transition for general values of p using the
method of ref. 9. Intuitively, the quantum fluctuations
are expected to be suppressed as the number of the fer-
romagnetic bonds increases. Therefore it is natural to
expect that the magnetization plateau, which is an es-
sentially quantum phenomenon, becomes less favourable
as the number of the ferromagnetic bonds increases. Sur-
prisingly, our numerical calculation shows that this is in-

correct. We discuss the physical origin of this unexpected
behavior.

This paper is organized as follows. In the next section,
the model Hamiltonian is defined and the numerical re-
sults of the magnetization curve and the phase diagram
of the plateau-non-plateau transition is presented. The
physical reason of the enhancement of the plateau state
for large p is also explained in this section. The final
section is devoted to a summary and discussion.

§2. Numerical Results

2.1 Model Hamiltonian

The Hamiltonian of the antiferromagnetic-(ferromagnetic)n

polymerized S = 1/2 XXZ chain in the magnetic field is
given by

H = −j
L

∑

l=1

n−1
∑

i=0

H(n+1)l+i(1) +
L

∑

l=1

H(n+1)l+n(∆)

− gµBH

(n+1)L
∑

l=1

Sz
l . (2.1)

where

Hl(∆) = Sx
l Sx

l+1 + Sy
l Sy

l+1 + ∆Sz
l Sz

l+1, (2.2)
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The ferromagnetic coupling constant, number of the fer-
romagnetic bond and anisotropy parameter of the anti-
ferromagnetic bond are represented by j, n and ∆, re-
spectively. The ferromagnetic bonds are assumed to be
isotropic. The magnetic field, the electronic g-factor and
Bohr magneton are denoted by H, g and µB, respectively.
This model has spatial periodicity p ≡ n + 1. In the fol-
lowing, we take gµB = 1 as unit.

In the limiting case of j → ∞, this model tends to
the S = p/2 uniform antiferromagnetic XXZ chain, so
that no plateau is expected. Therefore the BKT type
plateau-non-plateau transition is expected to take place
at a finite critical value of j.

2.2 Magnetization plateaus

The schematic magnetization curve of the present
model is shown in Fig. 1. In the present paper, we
concentrate on the highest plateau with q = 1 and
mz = 1/2 − 1/p. The total magnetization M ≡ mz

on the plateau is given by M = Mp ≡ pL(1/2 − 1/p) =
Ms(1 − 2/p) where Ms ≡ pL/2 is the saturation mag-
netization. In Fig. 1 the critical fields Hc0 corresponds

0

1.5
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M/Ms

Hc0
Hc1

Hc2
Hs

Gap

Gap

Plateau

1–2/p

Fig. 1. Schematic magnetization curve of the present model.

to the energy gap in the absence of the magnetic field,
Hc1, to the energy gap between the lowest energy with
Mz = Mp and that with Mz = Mp − 1, Hc2, the energy
gap between the lowest energy with Mz = Mp + 1 and
that with Mz = Mp. Finally Hs is the saturation field.
The lower part of the magnetization curve is represented
by the dashed line where lower plateaus may appear.

We use an exact diagonalization method to calcu-
late the magnetization curve. As an example, the j-
dependence of the 3 critical fields Hc0, Hc1 and Hc2 for
p = 4 and ∆ = 1 are shown in Fig. 2 by the symbols •, 3

and ◦, respectively, which are obtained by the Shanks’17)

extrapolation of the results of the Lanczos exact diago-
nalization for 4L = 8, 16 and 24 with periodic boundary
condition. The plateau seems to close at a finite value
of j. Because the non-plateau state corresponds to the
gapless spin liquid and the plateau state to the spin gap
state, this transition is expected to be the BKT-type
transition. In the next subsection. we determine the
critical point of the plateau-non-plateau transition from

numerical diagonalization data for general values of p.

0 5
0

0.5

1

H

j

m=1/4

Fig. 2. The critical fields for p = 4 and ∆ = 1. The critical fields
Hc0, Hc1 and Hc2 are represented by •, 3 and ◦.

2.3 BKT critical point

It is difficult to estimate the BKT critical point
precisely from standard finite size analysis of the nu-
merical calculation data. To circumvent this diffi-
culty Nomura and Kitazawa19) proposed to use level
spectroscopy method18) with twisted boundary con-
dition. This method has been successfully applied
to the ferromagnetic-ferromagnetic-antiferromagnetic
trimerized Heisenberg chain by Kitazawa and Okamoto.9)

In the present work, we employ this method for the
present model. Here we do not explain how and why
this method works, because methodological details are
well described in ref. 9.

The finite size critical point is determined from the
crossing point of ∆E0,2 with the lower of ∆Ec

1/2,0 or
∆Es

1/2,0 defined by,

∆E0,2 =
1

2

{

E0(Mp + 2, 0, 1) + E0(Mp − 2, 0, 1)
}

− E0(Mp, 0, 1). (2.3)

and

∆Ec
1/2,0 = ETBC(Mp, 1) − E(Mp, 0, 1) (2.4)

∆Es
1/2,0 = ETBC(Mp,−1) − E(Mp, 0, 1) (2.5)

where E0(M
z, k, P ) is the lowest energy under a periodic

boundary condition with magnetization Mz, wave num-
ber k and parity P . The energy ETBC(Mz, P ) is the
lowest energy with the twist boundary conditions with
magnetization Mz and parity P .

To confirm the reliability of this method the following
average

x =
xc

1/2,0(L) + 3xs
1/2(L)

4
. (2.6)

is close to 0.5 at the critical points9) where xc,s
1/2,0(L)

are the scaling exponents corresponding to Ec,s
1/2,0 and

defined by

xc,s
1/2,0 =

L

2πvs
∆Ec,s

1/2,0. (2.7)
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Here vs is the spin wave velocity given by

vs = lim
L→∞

L

2π
[EMp,k1

(L) − EMp
(L)], (2.8)

where EMp,k1
(L) is the energy of the excited state with

wave number k1 = 2π
L and Mz = Mp. The results are

shown in Fig. 3 for p = 4 which confirms that x = 0.5
holds with good accuracy.

Figure 4 shows the behavior of ∆E0,2 and ∆Es
1/2,0 for

L = 6 unit cells and p = 4. From the crossing point,
we obtain jc(L) = 6.310 for L = 6 unit cells. The BKT
transition point for the infinte system can be obtained
by extrapolating from L = 2, 4 and 6 to N → ∞ as
jc = 6.260 assuming the extrapolation formula jc(L) =
jc + c1

L2 + c2

L4 .

–1 0 1
0.4

0.5

0.6

x

∆

Fig. 3. The extrapolated values of the averaged scaling dimension
x on the critical points for p = 4. The solid line is x = 0.5

6.3 6.2
0.096

0.095

0.094
L=8

j

∆E ∆ E0,2

∆ E1/2,0
s

Fig. 4. The j-dependence of the energies ∆E0,2 and ∆Es
1/2,0

rep-

resented by ◦ and •, respectively, for p = 4,∆ = 1 and L = 6.

The phase boundaries are shown in Fig. 5 for p = 3, 4
and 5 by 2, • and ◦, respectively. Extrapolation is made
from L = 2, 4 and 6 for p = 4 and 5. The results for p = 3
are taken from ref. 9. From this figure, we see that the
critical points jc does not decrease monotonically with
an increase of periodicity p. Therefore we further calcu-
late the cases of longer periodicity up to p = 13. The p
dependence of jc is shown in Fig. 6 for ∆ = 1.0, 0.5, 0.0
and −0.5. The different symbols represent the critical
points for different system size L. The data for p = 2
is also included for ∆ = −0.5. When ∆ ≥ 0 and p = 2
then jc equals infinity.15, 16) For p = 4 and 5, the calcu-
lations are carried out for L = 2, 4 and 6 and for p = 6
and 7, L = 2 and 4. The extrapolation to L → ∞ is
made for these cases. Nevertheless, the L-dependence of

–1 0 1
0

5

10

15

∆

j No Plateau

Plateau

Fig. 5. The phase boundaries on the ∆− j-plane for p = 3, 4 and
5 represented by 2 • and ◦ , respectively. The lines are fitted.

4 8 12
0

5

10

15

jc

p

∆=1.0

∆=0.5

No Plateau

Plateau

∆=0.0

∆=−0.5

L=2
L=4
L=6
L=8

Fig. 6. The p-dependence of the critical point jc for ∆ =
1.0, 0.5, 0.0 and −0.5 from top to bottom. The different sym-
bols distinguish jc’s for different system sizes L. The + symbols
are the values of jc extrapolated to L → ∞. The result for p = 3
is taken from ref. 9. For p = 2, jc → ∞ for ∆ ≥ 0.15, 16)

the critical point becomes weaker as the periodicity p be-
comes larger as shown in Fig. 6. Therefore for p ≥ 8, we
can safely estimate approximate values of the thermody-
namic critical point jc from that for L = 2. Surprisingly,
the p-dependence of the critical point is strongly non-
monotonic. The decrease of jc with p for small values
of p is consistent with intuition that the increasing the
number of the ferromagnetic bonds suppresses the quan-
tum fluctuation. The magnetization plateau, which is
the quantum origin, becomes less favoured.

With the further increase of p, however, jc increases
again almost linearly with p. This phenomenon can be
explained by the following physical picture. On the mag-
netization plateau Mz = Mp, the singlet pairs are lo-
cated on the antiferromagnetic bonds and other spins
are alligned in the direction of the magnetic field. This
is schematically shown in Fig. 7(a). If the magne-
tization becomes Mz = Mp + 1, one singlet pair is
broken as shown in Fig. 7(b). The energy difference
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E0(Mp + 1) − E0(Mp) determines the upper edge of
the plateau Hc2. Because the additional up spin is lo-
calized around the antiferromagnetic bonds, the criti-
cal field Hc2 tends to a constant value of the order of
the antiferromagnetic coupling constant ∼ O(1) as p in-
creases. On the other hand, if the magnetization be-
comes Mz = Mp − 1, one of p− 2 spins in the ferromag-
netic segments is inverted as shown in Fig. 7(c). In the
absence of coupling to the 2 boundary spins forming a
local singlet, the segment of the remaining p − 2 spins,
which contain one inverted spin, form a state with total
spin S = p−2

2 and magnetization Sz = p−2
2 − 1. Since

the ferromagnetic bonds are isotropic this state has the
same energy as the fully polarized state with S = p−2

2

and Sz = p−2
2 . The energy change E0(Mp)−E0(Mp−1)

is due to the interaction of the inverted spin with the
singlet pair on the antiferroamgnetic bonds at the both
ends of the ferromagnetic segment. The probability
that the inverted spin stays on the boundary sites of
the segment is proportional to 1

p−2 . Hence, the energy
diference E0(Mp) − E0(Mp − 1), which determines the
lower edge of the plateau Hc1 is estimated as O( j

p−2 ) for
large enough p. Because the plateau-non-plateau tran-
sition takes place around the point Hc1 ∼ Hc2, we find
jc ∝ p − 2 for large enough p. This explains why jc in-
creases linearly with p for large p. To substantiate this
argument, Hc1 and Hc2 are calculated numerically by
exact diagonalization for L = 2 and ∆ = 1.0. Figure 8
shows that Hc1 scales with j

p−2 for p = 10, 11, 12 and 13
from top to bottom although there is some deviation as
the critical point is approached. Figure 9 shows Hc2 is
approximately independent of p and tends to a constant
value for large j. These results show that the increase of
the critical point for large p is a consequence of delocal-
ization of the down spin in a wide region of length p. In
Fig. 10, jc

p−2 is plotted against p. It is evident that jc

p−2
tends to a constant value for large enough p.

§3. Summary and Discussion

The magnetization plateaus at mz = 1/2 − 1/p in
the S = 1/2 antiferromagnetic-(ferromagnetic)n poly-
merized XXZ chains are investigated by exact diagonal-
ization of finite size systems. The plateau-non-plateau
BKT transition points are determined precisely by the
level spectroscopy method with twisted boundary condi-
tion.19, 9)

The p-dependence of the critical point is not a mono-
tonic function. For small p, the critical point decreases
with p in agreement with the simple-minded intuition
that an increase of the number of the ferromagnetic
bonds suppresses the quantum fluctuation and the mag-
netization plateau, which is the quantum origin, becomes
less favoured. With a further increase of p, however, jc

increases again. This can be explained by the delocaliza-
tion of down spin within the ferromagnetic segment with
length p − 2.

The plateau for p = 3 is narrow for a wide range of

1 2 p p+1 p+2 2p

aff

(p–2)

f f f

(a)

1 2 p p+1 p+2 2p

aff

(p–2)

f f f

(b)

1 2 p p+1 p+2 2p

aff

(p–2)

f f f

(c)

Fig. 7. The spin configurations (a) on the magnetization plateau
Mz = Mp, (b) at the magnetization Mz = Mp + 1 and (c) at

the magnetization Mz = Mp − 1. The spin pairs connected by
ovals form local singlets.

0 0.5 1

0.1

0.2

j/(p–2)

HC1

p=10
p=11
p=12
p=13

Fig. 8. The j
p−2

dependence of Hc1 for p = 10, 11, 12 and 13

from top to bottom, Hc1 scales as j
p−2

.

j ≤ jc.
2) This is the reason why so far this simplest

example of the magnetization plateau has not even ob-
served experimentally. Actually, no visible plateau is ob-
served in the magnetization curve of 3CuCl2· 2dx which
has j ∼ 4.5 << jc.

2, 20) In contrast, the magnetization
plateaus for large p is fairly wide compared to that for
p = 3 for moderate values of j. As an example, we show
the magnetization curve for p = 12, ∆ = 1 and j = 4.0
obtained by exact diagonalization for L = 2 in Fig. 11.
It is evident that this plateau is wide enough for experi-
mental measurement, although the value of jc for p = 12
is less than that for p = 3. Thus a systematic synthesis
of materials with broad spatial periodicity is hoped to
experimentally confirm our predictions.

Chen and Hida thank K. Okamoto for fruitful discus-
sion. We also thank A. Kitazawa and K. Okamoto for
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p=13

Fig. 9. The j-dependence of Hc2 for p = 10, 11, 12 and 13. Hc2

is almost independent of p and the tends to a constant value for
large j.

4 8 12
0

1
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p

jc/(p–2)

∆=1.0

∆=0.5

∆=0.0

∆=−0.5

L=2
L=4
L=6

Fig. 10. The p-dependence of jc/(p − 2).

0 0.1 0.2 0.3

0.5

1

H

M
z /M

s

j=4.0

Fig. 11. The magnetization curve for p = 12, ∆ = 1 and j = 4
obtained by exact diagonalization with L = 2.

supplying us the numerical data of ref. 9. The numeri-
cal calculation is performed using the program package
TITPACK version 2 coded by H. Nishimori on HITAC
S820 and SR2201 at the Information Processing Cen-
ter of Saitama University and the FACOM VPP500 at
the Supercomputer Center of Institute for Solid State
Physics, University of Tokyo. This work is supported by
a Grant-in-Aid for Scientific Research from the Ministry
of Education, Science, Sports and Culture of Japan and a
research grant from the Natural Science and Engineering
Research Council of Canada (NSERC).
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