100 research outputs found

    Integer spin-chain antiferromagnetism of the 4d oxide CaRuO3 with post-perovskite structure

    Full text link
    A quasi-one dimensional magnetism was discovered in the post-perovskite CaRuO3 (Ru4+: 4d4, Cmcm), which is iso-compositional with the perovskite CaRuO3 (Pbnm). An antiferromagnetic spin-chain function with -J/kB = 350 K well reproduces the experimental curve of the magnetic susceptibility vs. temperature, suggesting long-range antiferromagnetic correlations. The anisotropic magnetism is probably owing to the dyz - 2p- dzx and dzx - 2p- dyz superexchange bonds along a-axis. The Sommerfeld coefficient of the specific heat is fairly small, 0.16(2) mJ mol-1 K-2, indicating that the magnetism reflects localized nature of the 4d electrons. As far as we know, this is the first observation of an integer (S = 1) spin-chain antiferromagnetism in the 4d electron system.Comment: Accepted for publication in Phys. Rev.

    Charge disproportionation and the pressure-induced insulator?metal transition in cubic perovskite PbCrO3

    Get PDF
    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.Fil: Cheng, Jinguang. University Of Texas At Austin; Estados Unidos. Chinese Academy Of Sciences; República de China. University of Tokyo. Institute for Solid State Physics; JapónFil: Kweon, K. E.. University Of Texas At Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Ding, Yang. Argonne National Laboratory; Estados UnidosFil: Shirako, Y.. University Of Texas At Austin; Estados UnidosFil: Marshall, L. G.. University Of Texas At Austin; Estados Unidos. Northeastern University; Estados UnidosFil: Li, Z. Y.. University Of Texas At Austin; Estados UnidosFil: Li, X.. University Of Texas At Austin; Estados UnidosFil: Dos Santos, António M.. Oak Ridge National Laboratory. Quantum Condensed Matter Division; Estados UnidosFil: Suchomel, M. R.. Argonne National Laboratory; Estados UnidosFil: Matsubayashi, K.. University of Tokyo. Institute for Solid State Physics; JapónFil: Uwatoko, Y.. University of Tokyo. Institute for Solid State Physics; JapónFil: Hwang, G. S.. University Of Texas At Austin; Estados UnidosFil: Goodenough, John B.. University Of Texas At Austin; Estados UnidosFil: Zhou, J. S.. University Of Texas At Austin; Estados Unido

    Accurate Strand-Specific Quantification of Viral RNA

    Get PDF
    The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR) assays are increasingly being used for this purpose, but the accuracy of these assays depends on the assumption that the amount of cDNA measured during the quantitative PCR (qPCR) step accurately reflects amounts of a specific viral RNA strand present in the RT reaction. To specifically test this assumption, we developed multiple ssqPCR assays for the positive-strand RNA virus o'nyong-nyong (ONNV) that were based upon the most prevalent ssqPCR assay design types in the literature. We then compared various parameters of the ONNV-specific assays. We found that an assay employing standard unmodified virus-specific primers failed to discern the difference between cDNAs generated from virus specific primers and those generated through false priming. Further, we were unable to accurately measure levels of ONNV (−) strand RNA with this assay when higher levels of cDNA generated from the (+) strand were present. Taken together, these results suggest that assays of this type do not accurately quantify levels of the anti-genomic strand present during RNA virus infectious cycles. However, an assay permitting the use of a tag-specific primer was able to distinguish cDNAs transcribed from ONNV (−) strand RNA from other cDNAs present, thus allowing accurate quantification of the anti-genomic strand. We also report the sensitivities of two different detection strategies and chemistries, SYBR® Green and DNA hydrolysis probes, used with our tagged ONNV-specific ssqPCR assays. Finally, we describe development, design and validation of ssqPCR assays for chikungunya virus (CHIKV), the recent cause of large outbreaks of disease in the Indian Ocean region

    Effects of Magnetovolume and Spin-orbit Coupling in the Ferromagnetic Cubic Perovskite BaRuO3

    Full text link
    BaRuO3 having five different crystal structures has been synthesized by varying the pressure while sintering. Contrary to the other phases being nonmagnetic, the cubic perovskite phase synthesized recently shows an itinerant ferromagnetic character. We investigated this ferromagnetic BaRuO3 using first principles calculations. A few van Hove singularities appear around the Fermi energy, causing unusually high magnetovolume effects of ΔM/Δa\Delta M/\Delta a ~ 4.3 μB\mu_B/\AA as well as a Stoner instability [IN(0) ~ 1.2]. At the optimized lattice parameter a, the magnetic moment M is 1.01 μB\mu_B in the local spin density approximation. When spin-orbit coupling is included, the topologies of some Fermi surfaces are altered, and the net moment is reduced by 10% to a value very close to the experimentally observed value of ~ 0.8 μB\mu_B. Our results indicate that this ferromagnetism is induced by the Stoner instability, but the combined effects of the p-d hybridization, the magnetovolume, and the spin-orbit coupling determine the net moment. In addition, we briefly discuss the results of the tight-binding Wannier function technique.Comment: 5 pages and 5 embedded figures; proceedings of ICM 201

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    Get PDF
    We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system

    A Single Amino Acid Change in nsP1 Attenuates Neurovirulence of the Sindbis-Group Alphavirus S.A.AR86

    Get PDF
    S.A.AR86, a member of the Sindbis group of alphaviruses, is neurovirulent in adult mice and has a unique threonine at position 538 of nsP1; nonneurovirulent members of this group of alphaviruses encode isoleucine. Isoleucine was introduced at position 538 in the wild-type S.A.AR86 infectious clone, ps55, and virus derived from this mutant clone, ps51, was significantly attenuated for neurovirulence compared to that derived from ps55. Intracranial (i.c.) s55 infection resulted in severe disease, including hind limb paresis, conjunctivitis, weight loss, and death in 89% of animals. In contrast, s51 caused fewer clinical signs and no mortality. Nevertheless, comparison of the virus derived from the mutant (ps51) and wild-type (ps55) S.A.AR86 molecular clones demonstrated that s51 grew as well as or better than the wild-type s55 virus in tissue culture and that viral titers in the brain following i.c. infection with s51 were equivalent to those of wild-type s55 virus. Analysis of viral replication within the brain by in situ hybridization revealed that both viruses established infection in similar regions of the brain at early times postinfection (12 to 72 h). However, at late times postinfection, the wild-type s55 virus had spread throughout large areas of the brain, while the s51 mutant exhibited a restricted pattern of replication. This suggests that s51 is either defective in spreading throughout the brain at late times postinfection or is cleared more rapidly than s55. Further evidence for the contribution of nsP1 Thr 538 to S.A.AR86 neurovirulence was provided by experiments in which a threonine residue was introduced at nsP1 position 538 of Sindbis virus strain TR339, which is nonneurovirulent in weanling mice. The resulting virus, 39ns1, demonstrated significantly increased neurovirulence and morbidity, including weight loss and hind limb paresis. These results demonstrate a role for alphavirus nonstructural protein genes in adult mouse neurovirulence

    Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018

    Get PDF
    In 2018, the family Arenaviridae was expanded by inclusion of 1 new genus and 5 novel species. At the same time, the recently established order Bunyavirales was expanded by 3 species. This article presents the updated taxonomy of the family Arenaviridae and the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future
    corecore