9 research outputs found

    Wax boluses and accuracy of EBT and RTQA radiochromic film detectors in radiotherapy with the JINR Phasotron proton beam

    Get PDF
    AimTo present the results obtained using radiochromic films EBT and RTQA 1010P for the reconstruction the dose distributions for targets irradiated by proton beam and modified by wax boluses.BackgroundIn Medico-Technical Complex at the Joint Institute for Nuclear Research in Dubna implemented technology of wax boluses.Materials and methodsWax boluses are easier to make and they give better dose distributions than boluses made from modeling clay previously used at our center. We irradiated two imaginary targets, one shaped as a cylinder and the other one as two cuboids. The evaluated calibration curve was used for calculation of the dose distributions measured by the EBT and RTQA radiochromic film. In both cases, the measured dose distributions were compared to the dose distributions calculated by the treatment planning system (TPS). We also compared dose distributions using three different conformity indices at a 95% isodose.ResultsBetter target coverage and better compliance of measurements (semiconductor detectors and radiochromic films) with calculated doses was obtained for cylindrical target than for cuboidal target. The 95% isodose covered well the tumor for both target shapes, while for cuboidal target larger volume around the target received therapeutic dose, due to the complicated target shape. The use wax boluses provided to be effective tool in modifying proton beam to achieve appropriate shape of isodose distribution.ConclusionEBT film yielded the best visual matching. Both EBT and RTQA films confirmed good conformity between calculated and measured doses, thus confirming that wax boluses used to modify the proton beam resulted in good dose distributions

    Ultra-Hypofractionated Proton Therapy in Localized Prostate Cancer: Passive Scattering versus Intensity-Modulated Proton Therapy

    No full text
    Few studies have directly compared passive scattering (PS) to intensity-modulated proton therapy (IMPT) in the delivery of ultra-hypofractionated proton beams to the localized prostate cancer (PCa). In this preliminary study involving five patients previously treated with CyberKnife, treatment plans were created for PS and IMPT (36.25 CGE in five fractions with two opposing fields) to compare the dosimetric parameters to the planning target volume (PTV) and organs-at-risk (OAR: rectum, bladder, femoral heads). Both plans met the acceptance criteria. Significant differences were observed in the minimum and maximum doses to the PTV. The mean dose to the PTV was lower for PS (35.62 ± 0.26 vs. 37.18 ± 0.14; p = 0.002). Target coverage (D98%) was better for IMPT (96.79% vs. 99.10%; p = 0.004). IMPT resulted in significantly lower mean doses to the rectum (16.75 CGE vs. 6.88 CGE; p = 0.004) and bladder (17.69 CGE vs. 5.98 CGE p = 0.002). High dose to the rectum (V36.25 CGE) were lower with PS, but not significantly opposite to high dose to the bladder. No significant differences were observed in mean conformity index values, with a non-significant trend towards higher mean homogeneity index values for PS. Non-significant differences in the gamma index for both fields were observed. These findings suggest that both PS and IMPT ultra-hypofractionated proton therapy for PCa are highly precise, offering good target coverage and sparing of normal tissues and OARs

    Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: Reference for a complex bacterial genome

    No full text
    Background: The genus Borrelia comprises spirochaetal bacteria maintained in natural transmission cycles by tick vectors and vertebrate reservoir hosts. The main groups are represented by a species complex including the causative agents of Lyme borreliosis and relapsing fever group Borrelia. Borrelia miyamotoi belongs to the relapsing fever group of spirochetes and forms distinct populations in North America, Asia, and Europe. As all Borrelia species B. miyamotoi possess an unusual and complex genome consisting of a linear chromosome and a number of linear and circular plasmids. The species is considered an emerging human pathogen and an increasing number of human cases are being described in the Northern hemisphere. The aim of this study was to produce a high quality reference genome that will facilitate future studies into genetic differences between different populations and the genome plasticity of B. miyamotoi. Results: We used multiple available sequencing methods, including Pacific Bioscience single-molecule real-time technology (SMRT) and Oxford Nanopore technology (ONT) supplemented with highly accurate Illumina sequences, to explore the suitability for whole genome assembly of the Russian B. miyamotoi isolate, Izh-4. Plasmids were typed according to their potential plasmid partitioning genes (PF32, 49, 50, 57/62). Comparing and combining results of both long-read (SMRT and ONT) and short-read methods (Illumina), we determined that the genome of the isolate Izh-4 consisted of one linear chromosome, 12 linear and two circular plasmids. Whilst the majority of plasmids had corresponding contigs in the Asian B. miyamotoi isolate FR64b, there were only four that matched plasmids of the North American isolate CT13-2396, indicating differences between B. miyamotoi populations. Several plasmids, e.g. lp41, lp29, lp23, and lp24, were found to carry variable major proteins. Amongst those were variable large proteins (Vlp) subtype Vlp-α, Vlp-Îł, Vlp-ÎŽand also Vlp-ÎČ. Phylogenetic analysis of common plasmids types showed the uniqueness in Russian/Asian isolates of B. miyamotoi compared to other isolates. Conclusions: We here describe the genome of a Russian B. miyamotoi clinical isolate, providing a solid basis for future comparative genomics of B. miyamotoi isolates. This will be a great impetus for further basic, molecular and epidemiological research on this emerging tick-borne pathogen

    Applied Research Stations and New Beam Transfer Lines at the NICA Accelerator Complex

    No full text
    International audienceApplied research at the NICA accelerator complex include the following areas that are under construction: single event effects testing on capsulated microchips (energy range of 150-500 MeV/n) at the Irradiation Setup for Components of Radioelectronic Apparature (ISCRA) and on decapsulated microchips (ion energy up to 3,2 MeV/n) at the Station of CHip Irradiation (SOCHI), space radiobiological research and modelling of influence of heavy charged particles on cognitive functions of the brain of small laboratory animals and primates (ener-gy range 500-1000 MeV/n) at the Setup for Investigation of Medical Biological Objects (SIMBO). Description of main systems and beam parameters at the ISCRA, SOCHI and SIMBO applied research stations is presented. The new beam transfer lines from the Nuclotron to ISCRA and SIMBO stations, and from HILAC to SOCHI station are being constructed. Description of the transfer lines layout, the magnets and diagnostic detectors, results of the beam dynamics simulations are described given

    Global phylogeography and evolutionary history of Shigella dysenteriae type 1.

    No full text
    International audienceTogether with plague, smallpox and typhus, epidemics of dysentery have been a major scourge of human populations for centuries(1). A previous genomic study concluded that Shigella dysenteriae type 1 (Sd1), the epidemic dysentery bacillus, emerged and spread worldwide after the First World War, with no clear pattern of transmission(2). This is not consistent with the massive cyclic dysentery epidemics reported in Europe during the eighteenth and nineteenth centuries(1,3,4) and the first isolation of Sd1 in Japan in 1897(5). Here, we report a whole-genome analysis of 331 Sd1 isolates from around the world, collected between 1915 and 2011, providing us with unprecedented insight into the historical spread of this pathogen. We show here that Sd1 has existed since at least the eighteenth century and that it swept the globe at the end of the nineteenth century, diversifying into distinct lineages associated with the First World War, Second World War and various conflicts or natural disasters across Africa, Asia and Central America. We also provide a unique historical perspective on the evolution of antibiotic resistance over a 100-year period, beginning decades before the antibiotic era, and identify a prevalent multiple antibiotic-resistant lineage in South Asia that was transmitted in several waves to Africa, where it caused severe outbreaks of disease
    corecore