462 research outputs found

    Out-of-phase oscillation between superfluid and thermal components for a trapped Bose condensate under oscillatory excitation

    Full text link
    The vortex nucleation and the emergence of quantum turbulence induced by oscillating magnetic fields, introduced by Henn E A L, et al. 2009 (Phys. Rev. A 79, 043619) and Henn E A L, et al. 2009 (Phys. Rev. Lett. 103, 045301), left a few open questions concerning the basic mechanisms causing those interesting phenomena. Here, we report the experimental observation of the slosh dynamics of a magnetically trapped 87^{87}Rb Bose-Einstein condensate (BEC) under the influence of a time-varying magnetic field. We observed a clear relative displacement in between the condensed and the thermal fraction center-of-mass. We have identified this relative counter move as an out-of-phase oscillation mode, which is able to produce ripples on the condensed/thermal fractions interface. The out-of-phase mode can be included as a possible mechanism involved in the vortex nucleation and further evolution when excited by time dependent magnetic fields.Comment: 5 pages, 5 figures, 25 reference

    Photoassociative ionization of Na inside a storage ring

    Get PDF
    Motivated by recent interest in low dimensional arrays of atoms, we experimentally investigated the way cold collisional processes are affected by the geometry of the considered atomic sample. More specifically, we studied the case of photoassociative ionization (PAI) both in a storage ring where collision is more unidirectional in character and in a trap with clear undefinition of collision axis. First, creating a ring shaped trap (atomotron) we investigated two-color PAI dependence with intensity and polarization of a probing laser. The intensity dependence of the PAI rate was also measured in a magneto-optical trap presenting equivalent temperature and density conditions. Indeed, the results show that in the ring trap, the value of the PAI rate constant is much lower and does not show evidences of saturation, unlike in the case of the 3D-MOT. Cold atomic collisions in storage ring may represent new possibilities for study.Comment: 5 pages, 5 figures; Accepted by Optics Communicatio

    Injection locking of a low cost high power laser diode at 461 nm

    Get PDF
    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.Comment: 2nd corrected version (minor revisions); Manuscript accepted for publication in Review of Scientific Instruments; 5 pages, 6 figure

    Route to turbulence in a trapped Bose-Einstein condensate

    Full text link
    We have studied a Bose-Einstein condensate of 87Rb^{87}Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations.Comment: 6 pages, 3 figure

    Three-vortex configurations in trapped Bose-Einstein condensates

    Full text link
    We report on the creation of three-vortex clusters in a 87Rb^{87}Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulation, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation, and as a vortex-antivortex-vortex cluster. The linear configurations are very likely the first experimental signatures of predicted stationary vortex clusters.Comment: 4 pages, 4 figure

    Comparison between 403 nm and 497 nm repumping schemes for strontium magneto-optical traps

    Get PDF
    The theoretical description of the external degrees of freedom of atoms trapped inside a magneto-optical trap (MOT) often relies on the decoupling of the evolution of the internal and external degrees of freedom. That is possible thanks to much shorter timescales typically associated with the first ones. The electronic structure of alkaline-earth atoms, on the other hand, presents ultra-narrow transitions and metastable states that makes such an approximation invalid in the general case. In this article, we report on a model based on open Bloch equations for the evolution of the number of atoms in a magneto-optical trap. With this model we investigate the loading of the strontium blue magneto-optical trap under different repumping schemes, either directly from a Zeeman slower, or from an atomic reservoir made of atoms in a metastable state trapped in the magnetic quadrupolar field. The fluorescence observed on the strong 461~nm transition is recorded and quantitatively compared with the results from our simulations. The comparison between experimental results and calculations within our model allowed to identify the existence of the decay paths between the upper level of the repumping transition and the dark strontium metastable states, which could not be explained by electric dipole transition rates calculated in the literature. Moreover, our analysis pinpoints the role of the atomic movement in limiting the efficiency of the atomic repumping of the Sr metastable states

    Equation of state for a trapped quantum gas: remnant of zero-point energy effects

    Get PDF
    The study of the thermodynamic properties of trapped gases has attracted great attention during the last few years and can be used as a tool to characterize such clouds in the presence of other phenomena. Here, we obtain an equation of state for a harmonically trapped Bose–Einstein condensate taking the limit of by means of global themodynamic variables. These variables allow us to explore limits in which the standard thermodynamics are not defined. Our results are taken in the high density limit, and the extrapolation for is done later. Even in this situation, we qualitatively observe the well known existence of a zero-point energy for harmonic potentials in which the determination of conjugated variables is limited by the quantum nature of the system

    Observation of Bose-Einstein condensation in an atomic trap in terms of macroscopic thermodynamic parameters

    Get PDF
    To overcome the difficulties in defining pressure for a gas confined in an inhomogeneous trap, we define single macroscopic parameters that behave like pressure and volume. We measure the phase diagram of a 87Rb Bose gas in a harmonic trap in terms of those macroscopic parameters obtained from the spatial distribution of atoms. Considering the relevant variables such as the trap potential V=(ωxωyωz)−1, number of atoms N, and temperature T, a parameter Π=Π(N,V,T) is introduced to characterize the overall macroscopic pressure of the system. We construct the phase diagram (Π vs T) identifying the main features related to the Bose-Einstein condensation (BEC) transition in a trapped gas. A thermodynamic description of the phase transition based on purely macroscopic parameters provides us with a description that does not need the local-density approximation. This procedure can be used to explore different aspects related to BEC such as the nature of the phase transition in a trapped gas.FAPESPCNPqCAPESUniversidad Nacional Autónoma de México (IN-116110

    Spin-wave scattering at low temperatures in manganite films

    Full text link
    The temperature TT and magnetic field HH dependence of the resistivity ρ\rho has been measured for La0.8y_{0.8-y}Sr0.2_{0.2}MnO3_{3} (y=0 and 0.128) films grown on (100) SrTiO3_{3} substrates. The low-temperature ρ\rho in the ferromagnetic metallic region follows well ρ(H,T)=ρ0(H)+A(H)ωs/sinh(ωs/2kBT)+B(H)T7/2\rho (H,T)=\rho _{0}(H)+A(H)\omega_{s}/\sinh (\hbar \omega_{s}/2k_{B}T)+B(H)T^{7/2} with ρ0\rho _{0} being the residual resistivity. We attribute the second and third term to small-polaron and spin-wave scattering, respectively. Our analysis based on these scattering mechanisms also gives the observed difference between the metal-insulator transition temperatures of the films studied. Transport measurements in applied magnetic field further indicate that spin-wave scattering is a key transport mechanism at low temperatures.Comment: 5 pages, 4 figures. to appear in Phys. Rev.
    corecore