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Abstract
The study of the thermodynamic properties of trapped gases has attracted great attention during the
last few years and can be used as a tool to characterize such clouds in the presence of other phenomena.
Here, we obtain an equation of state for a harmonically trapped Bose–Einstein condensate taking the
limit ofT 0 bymeans of global themodynamic variables. These variables allowus to explore limits
inwhich the standard thermodynamics are not defined.Our results are taken in the high density limit,
and the extrapolation for N 1 is done later. Even in this situation, we qualitatively observe thewell
known existence of a zero-point energy for harmonic potentials inwhich the determination of
conjugated variables is limited by the quantumnature of the system.

1. Introduction

Themacroscopicmanifestation of quantumphenomena has beenwidely studied, especially, in superfluid
helium [1–3], superconductors [4–6], and ultracold gases [7–9]. In this context, quantumfluids are especially
interesting from the standpoint of thermodynamics because, at low temperatures, they exhibit amacroscopic
occupation of the ground state of energy [10] and a continuous phase transition [11, 12]with consequences in
themacroscopic observables. Particularly, ultracold gases have been gaining importance in recent decades
thanks to their large versatility and the high level of control of their important parameters. In such systems, in
both classical or quantum regimes, amain characteristic is the spatial inhomogeneity due to the confining
potential. Normally, in dealingwith a Bose–Einstein condensate (BEC) of trapped atomswith a
nonhomogeneous density distribution of particles, the equation of state relating the usual conjugated
thermodynamic variables, pressure and volume, is derivedwith the help of the local density approximation
(LDA)method [13–15]. In this context, the atomic cloud is divided in infinitesimal volumes of constant density
(n r( )) and a defined local pressure (P). The BECphase transition can be studied by building up the P×n phase
diagram from the infinitesimal volumeswith different densities as if each of themwere individual systems.
Besides, this strange assumption and the loss of information in the atomic density profile, the LDAmethod
cannot be applied in situations inwhich there are abrupt changes in the density as it occurs in the presence of
vortices. To contour these problems, we based the thermodynamic description of the trapped BEC in terms of
global generalized variables [16–18].

Historically, the natural way to approach amany particle system is to treat it in terms of quantummechanics
and then to take the thermodynamic limit since the thermodynamic study of systems in the quantum limit is not
an easy task. In particular, situations inwhich quantum effects are appreciable, such as the Lamb shift [19], the
Casimir effect [20], or theHiggsfield [21], cannot be treated in a trivial form. These phenomena are defined in
different contexts, but they share one point in common: they are consequences of the existence of a zero point

OPEN ACCESS

RECEIVED

7 July 2015

REVISED

22October 2015

ACCEPTED FOR PUBLICATION

23November 2015

PUBLISHED

29 January 2016

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/2/023014
mailto:patricia.cmcastilho@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/2/023014&domain=pdf&date_stamp=2016-01-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/2/023014&domain=pdf&date_stamp=2016-01-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


energy. The global thermodynamic approach allows exploring limits in the total quantum regime, allowing the
use ofmacroscopic variables to observe effects in the quantum limit.

In this paper, we present a relation between global ‘pressure’ and ‘volume’ for a harmonically trapped
condensate of Rb87 atoms near zero temperature. In recent publications [22–24], we have introduced an
alternativemethod to describe the thermodynamic properties of a heterogeneous trapped (classical or quantum)
gas. Briefly, considering an ideal gas confined by a harmonic trapping potential with frequencies , ,x y z( )w w w ,
the critical temperature for condensation (Tc), the number of particles (N), and the confinement, in terms of

x y z
1 3¯ ( )w w w w= , are related through k T N0.94B c

1 3¯w» [25]. This relation implies that, on taking the
thermodynamic limit as N  ¥, one needs 1 3w̄  ¥ in order to preserveTc constant. The quantity
N 1 3( ¯ )w plays the role of a density parameter, which leads to the definition of 1 3¯ w= as the global volume
parameter [16, 17]. In fact,  is an extensive variable, and its intensive conjugated variable is defined as the
pressure parameterΠ. This pressure parameter is fully determined by the trapping potential and the atomic
density distribution n r( ). The expressions for both conjugated parameters are defined as

1
, 1

x y z

( )
w w w

=

m
r n x y zr

3
d . 2x y z

3 2 2 2 2 2 2( )( ) ( )
 ò w w wP = + +

The relation betweenΠ and  constitute the equation of the state for the trapped gas.

2. Experimental setup

The BECof 87Rb atoms is obtained in a hybrid trap composed of amagnetic quadrupole trap (MQT) and an
optical-dipole trap (ODT) [26]. At low temperatures, this trap gives a harmonic potential with frequencies

x z
U

mw,
4 0

0
2w = due to the optical confinement and y

B

m z2
B x

0∣ ∣
w = m ¢

 due to themagnetic field gradient, whereU0

is the optical potential depth,m is the atomicmass,w0 is the dipole trap beamwaist, Bm is the Bohrmagneton, Bx¢
is thefield gradient along itsmain axis (x axis), and z0 is the relative position of theMQT andODTcenters along
the gravity direction. Therefore, the volume parameter can be varied simply by changing theODT laser powerP,
and its characterizationwas done bymeasuring the trapping frequencies for different values ofP. The error in
thismeasurement is small (typically around 1.5%) resulting in a small error for the determination of  .

After combining radio-frequency and pure optical evaporative cooling processes, we produce a BECwith
about N 5 10 atoms5= ´ , condensate fraction (N N0 ) running from80% to zero, and temperature (T)
ranging from50 to 400 nK. These parameters can be changed by applying smallmodifications to the
evaporation processes. Once the BEC is produced, the confinement is turned off, and an absorption image of the
cloud is recorded on aCCDcamera after 21 ms of free expansion. From this image, we obtain the 2Ddensity
profile that allows the determination ofN, N N0 , andT of the atomic cloud by fitting a bimodal function
composed ofGaussian andThomas–Fermi (TF) distributions. By assuming the cylindrical symmetry of the trap
( x zw w ), the 3Ddensity profile of the expanded cloud is determined. The in situ 3Ddensity profile n r( ) is
recovered separately for the thermal and condensate parts by considering a virial theorem and by applying the
Castin–Dum regression procedure [27], respectively. Once the in situ density profile is obtained, the pressure
parameter is calculated bymeans of equation (2).

3. Results

Wehave conducted experiments infive different volume parameters: 0.6 10 s ,1
8 3 = ´ 1.0 10 s ,2

8 3 = ´
1.6 10 s ,3

8 3 = ´ 3.0 10 s ,4
8 3 = ´ and 27 10 s5

8 3 = ´ . A typical pressure parameter curve as a function
of temperature for fixed  andN is shown infigure 1. The critical temperatureTc is identified by the presence of
an inflection point on theΠ versusT diagram.While the pressure parameter for the thermal cloud (T Tc> )
presents a linear behavior given by the adapted ideal gas relation Nk TB P = , belowTc, the curve is closer to a
T 4 dependence, which is typical for bosonicmassless particles [17, 28]. The behavior of the pressure parameter
versus temperature is equivalent to the graph presented by Ensher et al [29] showing the energy release per
particle of the condensated cloud as a function of temperature. The reason for this similarity is due to the fact
that P is the total internal energy asmeasured in [23]. The extrapolation of the curve forT Tc< allows for
identifying the pressure parameter on the conditionwhereT 0 , N0 ( )P . Equivalent curves were obtained for
different numbers of atoms at each  in order to investigate the behavior of N0 ( )P .More than 600 imageswere
taken for each value of varyingN,T, and N N0 , and a statistical treatment involving averages of similar images
was done during the analysis. Figure 2 shows the curve of N0 ( )P versusN for the same volume parameter of
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figure 1.We observe that, as the number of atoms decreases, N0 ( )P also decreases reaching a lower limit value
of Q

0P when the number of atoms is extrapolated to unity. Q
0P is a quantumphysical constantwith no classical

equivalent, and its experimental observation represents one of themain results of this paper. The value of Q
0P

was obtained for each studied volume parameter, and the final diagram showing the dependence of Q
0P with  is

presented infigure 3.
Afirst theoretical approximation to obtain the expected value for the pressure parameter asT 0 can be

done considering the TF approximation in addition to the expressions for the condensate fraction
N N T T1 c0

3( )- [25] and for the critical temperature, valid for an ideal gas. The analytic expression
obtained from equation (2)with such considerations is then given by

m a

m

N k T

21

15

0.94
. 3s BTF

2

2

2 5 3 7 5

( )


P = - ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭

In the limit ofT 0 , N0 ( )P will depend only on the s-wave scattering length of the atomic cloud as and on its
total number of atoms as follows in the equation below:

Figure 1.Π versusT phase diagramof a trapped bosonic cloud. Pressure parameter (Π) as a function of temperature (T) for
N 3 105= ´ and 3 10 s4

8 3 = ´ . The change in the behavior ofΠ is due to the appearance of a BEC fraction that allows us to
determine the critical point T ,c c( )P . An exponential extrapolation belowTc gives the value of the pressure parameter at the limit of
T 0 ,Π0. The error bars represent the statistical error on average.

Figure 2.The pressure parameter forT=0 ( 0P ) as a function of the total number of atoms (N). In the case of thisfigure, the volume
parameter was kept equal to 3 10 s4

8 3 = ´ . The solid red curve is the obtained N0( )P built from the N0
TF( )P fit.
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TheTF approximation is valid only when the interaction dominates the kinetic energy termon the
Hamiltonian of the system. Therefore, in the limit of N 0 , equation (4) also goes to zero. For a large number
of atoms ( 5 10 atoms5> ´ ), the validity of equation (4) has been demonstrated [22] but, as the number
decreases, some deviations can be observed. This ismostly due to the fact that the TF approximation is not a
good choice for a small number of atomswhen the pressure parameter tends to the zero-point energy limit
deviating from the expected zero value as N 0 .

In the classical picture, the relation betweenΠ and  is proportional to the temperature of the system, and,
in the case ofT 0 , the product · P vanishes [30]. Dealing with trapped quantum systems, onewould
expect that this relation should change since theminimumpossible energy atT=0 is no longer zero.

A theoretical estimation of Q
0P can bemade by taking into account the fact that the limit of N 1

represents a system inwhich the interactions vanish and one can consider a single particle state in order to
describe it. The ground state of the system corresponds to the ground state of a single particle trapped in a
harmonic oscillator. Therefore, we consider the density profile given by

n
m

r r e . 5m x y z
0

2
3 2

x y z
2 2 2( ) ∣ ( )∣ ¯ ( )( )


w

p
= Y = w w w- + +⎜ ⎟⎛

⎝
⎞
⎠

Finally, by inserting equation (5) into equation (2), one obtains Q
0P as a function of  and the ground state

energy of a single particle E x y z0
1

2
( )w w w= + + as follows:

E1

3
, 6Q

0
0 ( )


P =

showing that the state equation is limited by the ground state energy of the system. It is interesting to note that
this pressure parameter at the limit of zero temperature is equivalent to the pressure obtained for a gas of photons
in a box (P energy density 3photons ~ ). This is somehownot surprising because an ideal gas of bosons in a
harmonic trap below the critical temperature is equivalent to amassless gas of bosons. Evidences of such
similarities were foundwhile observingΠ versusT that results in T 4P µ atT Tc< , such as for a photon gas
[17]. Such a point has also been indicated in [28].

As part of our discussion, we should clarify themethod used to extract Q
0P from the data infigure 2. The

regimewe areworkingwith is dominated by interactions (TF regime), and it cannot provide a good
extrapolation for low atomnumbers.We, therefore, consider that atT= 0 the BEC atomic density is composed
of two parts: n rTF ( ) from the TF regime and n rGauss ( ) for the low atomnumber limit inwhich the interactions do
not play an important role any longer. For each number of atoms at any volume parameter, the total density is
given by n n nr r r1TF Gauss( ) ( ) ( ) ( )a a= + - with

Figure 3.Π versus the diagramof a trapped Bose–Einstein condensate in the limit forT=0. The pressure parameter forT=0 and
N=0, N 00 ( )P = , divided by E0, as a function of the volume parameter. Thefitting was donewith a curve proportional to 1- .
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where Ri m

2

i
2= m

w
are the TF radii and n Nnr rGauss 0( ) ( )= , which has the same formof equation (5) but

frequency values obtained from theTFfitting to our experimental data. The parameterα is number dependent
and should vary between 0, for low atomnumbers, and 1, at high numbers, keeping a smooth transition between
these extremes. In this sense, we proposed the following relation:

N 1 e , 8
N

Na( ) ( )a = -
-

whereNa is the number abovewhich the density starts to be predominantly given by the TF limit.With these
definitions,

N N N1 , 90 0
TF

0
Gauss( ) ( ) ( ) ( ) ( )a aP = P + - P

and our experimental data could be appropriately fitted by the TF term. From this fit, we extracted the value of 
which then is used to calculate N 1Q

0 0( )P = P = . In this way, wefind the parameters of the best Gaussian
density thatwould represent our system at low atomnumbers. This was done for each volume parameter in

order to be able to build the graph offigure 3. Thefitting resulted in 0.2
E

1Q
0

0 
=P

, which is remarkably close to the

expected value fromequation (6). Figure 3 dependence indicates clearly that Q
0P and  cannot be simultaneously

zero, not even atT=0, providing a remanescent of the uncertainty principle for these two conjugated
macroscopic thermodynamic quantities [31–34].

4. Conclusions

Pressure and volume constitute a very useful pair of independent variables to determine the state of a
thermodynamic system. Equivalent with pairs of conjugated variables that, in the quantum limit, obey an
uncertainty relation [31–34], it is somehow expected as an analogous constraint between pressure and volume
[30, 35]. The preceding demonstration reveals ideas for the thermodynamic variables quite equivalent to the
ones observed due to the uncertainty relation that compromisesmomentum and position (kinetic and potential
energy) to generate the ground state energy of a system [36]. The fact that an equivalent compromise can exist
between pressure and volume for a confined gas near absolute zero temperature is totally different fromwhat is
expected in traditional classical thermodynamics. Situations inwhich the equation of state is limited by the basic
concepts of quantummechanics open up a complete newwindowof possibilities for investigating quantities,
such as susceptibilities, phase diagrams, and the construction of fully quantum thermodynamicmachines,
possibly demonstrating extreme conditions for thewell establishedfield of thermodynamics.
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