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To overcome the difficulties in defining pressure for a gas confined in an inhomogeneous trap, we define
single macroscopic parameters that behave like pressure and volume. We measure the phase diagram of a 87Rb
Bose gas in a harmonic trap in terms of those macroscopic parameters obtained from the spatial distribution of
atoms. Considering the relevant variables such as the trap potential V = (ωxωyωz)−1, number of atoms N , and
temperature T , a parameter � = �(N,V,T ) is introduced to characterize the overall macroscopic pressure of
the system. We construct the phase diagram (� vs T ) identifying the main features related to the Bose-Einstein
condensation (BEC) transition in a trapped gas. A thermodynamic description of the phase transition based on
purely macroscopic parameters provides us with a description that does not need the local-density approximation.
This procedure can be used to explore different aspects related to BEC such as the nature of the phase transition
in a trapped gas.

DOI: 10.1103/PhysRevA.85.023632 PACS number(s): 03.75.Hh

I. INTRODUCTION

Experiments with cold gases are normally performed in
traps that result in spatially inhomogeneous samples [1–5].
In such cases, the phase diagram for the transition from
condensate to noncondensate phases becomes difficult to
express using quantities that apply mostly for homogeneous
systems such as pressure and volume. Part of the problem
can be solved if one relies on a local-density approximation
(LDA), where characterization of a nonuniform fluid, at a given
spatial position, is obtained by considering local quantities,
which in turn determine bulk properties. Since the phenomena
observed, such as Bose-Einstein condensation (BEC), occur
at a macroscopic level in a nonuniform trap, the description
would be more appropriate if the overall characterization
of the system could be achieved based on macroscopic
thermodynamic parameters, which should depend on other
thermodynamic variables such as temperature, number of
particles, and properties of the confining potential.

Recently, several papers have explored macroscopic quan-
tum phenomena based on measurements of thermodynamic
properties. Horikoshi et al. [6] used a force balance equation
to create a state equation, which allows one to determine local
quantities of a Fermi gas at unitarity. Ho and Zhou [7] proposed
an algorithm to obtain the phase diagram and thermodynamic
quantities of the corresponding bulk system by analyzing the
density profile of trapped gases. Equivalent concepts were also
used by Nascimbène et al. [8] to explore thermodynamics of
a Fermi system.

In a recent work quantum turbulence (QT) was demon-
strated as a tangled configuration of quantized vortices in a
Bose-Einstein condensate of 87Rb atoms [9]. In this case, QT
is mainly determined by the spatial distribution as well as
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modifications of the hydrodynamic properties. Nevertheless,
a proper way to identify turbulence in the superfluid could be
through the variation of the overall thermodynamic pressure.
As in normal fluids, the phenomenon of turbulence must
be followed by a drop in pressure [10]. However, there
are intrinsic difficulties associated with the determination of
pressure in a sample of turbulent BEC. Because of the strong
local fluctuations it is not appropriate to use a LDA. Therefore,
an alternative macroscopic quantity related to pressure but
resulting from the overall integration within the sample would
be better for characterizing QT in a trapped atomic superfluid.

In this work we consider a different way to describe
the phase diagram for the BEC transition using a single
macroscopic parameter to characterize the inhomogeneous
system. This approach is based on concepts introduced in
Refs. [4,11–13] and it is applied to experimentally analyze the
BEC transition for a harmonically trapped 87Rb gas. However,
the employed ideas are quite general and can be applied for
any trapped system.

II. DEFINING MACROSCOPIC PARAMETERS

In choosing macroscopic parameters analogous to pressure
and volume for inhomogeneous systems, we have required that
in the case of a homogeneous system those choices represent
the real pressure and volume. We start by considering the rele-
vant macroscopic parameters to be used. The thermodynamic
state of a gas trapped in a macroscopic harmonic potential is
naturally characterized by the trapped number of atoms N , the
temperature T , and parameters that determine the confining
potential. In a uniform gas, apart from the temperature and
number of particles, the mechanical variable that specifies the
thermodynamic state of the system is the volume V that the
sample occupies. Since a gas confined in a harmonic trap does
not have a well-defined volume, one can use an alternative
variable that yields analogous information regarding its size.
Considering the harmonic potential Vext(�r) = 1

2m( �ω · �r)2, with
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�ω = (ωx,ωy,ωz), it turns out that in a first approximation the
size of the system is given by r∗3 ≈ (kBT /mω2)3/2. Thus,
apart from constants and other independent thermodynamic
variables, this allows us to identify V ≡ 1/ω3 as the volume
parameter, where ω3 = ωxωyωz. This variable plays the role of
the actual volume in a harmonically trapped fluid. In fact, long
ago, de Groot et al. [14], and later Bagnato et al. [15] and others
[16–18], demonstrated that V is the correct thermodynamic
quantity to determine the thermodynamic limit (N → ∞,
V → ∞ but N/V → const). The volume parameter should
not be identified with the real volume of the system. In fact, it
does not even have units of volume. However, it presents the
most relevant property, which is the extensive thermodynamic
quality [11–13].

Therefore, we take the collection (N,T ,V) as the inde-
pendent thermodynamic variables that specify the state of the
system. Any other thermodynamic property of the confined gas
in this case can be expressed as a function of those variables.
In a homogeneous fluid the phase diagram may be expressed
in terms of the equation of state p = p(N,T ,V ), with p the
hydrostatic pressure. For inhomogeneous fluids, since the state
is given in terms of the volume parameter, we also define a
pressure parameter � such that the equation of state becomes
now � = �(N,T ,V). Analogously to the volume parameter,
� is not an actual hydrostatic pressure, although it does retain
characteristics of a pressure, as we argue now. We start by
evaluating the Helmholtz free energy

F (N,T ,V) = −kBT ln Tre−βH , (1)

where H = K + Uint + Vext is the Hamiltonian of the system

composed by the kinetic energy K = ∑
i

p2
i

2m
, the internal en-

ergy Uint = ∑
i<j U (rij ), and the external harmonic potential

Vext = ∑
i

1
2m(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i ). One can show [11] that

in this case, the quantity V = (ωxωyωz)−1 is an extensive
parameter in order to preserve the necessary extensive charac-
ter for the Helmholtz free energy. The pressure parameter is
defined as the intensive variable conjugated to V , that is,

� ≡ −
(

∂F

∂V

)
N,T

. (2)

We note that while � has neither units of pressure nor V
units of volume, the product �V still has units of energy. Since
� is an intensive thermodynamic variable, its dependence
on (N,T ,V) must be of the form � = �(N/V,T ). Thus,
in keeping with the analogy, we shall call N/V the density
parameter. From the above definition of �, without resorting
to a LDA, a very useful and general expression can be derived
[11–13]:

� = 2

3V

∫
n(�r)

1

2
m( �ω · �r)2d3r, (3)

where n(�r) is the inhomogeneous density profile of the gas
averaged over quantum or thermodynamic fluctuations. Since
both n(�r) and the confining potential are measurable quantities,
� can be readily determined. While �r is a microscopic variable,
the pressure parameter resulting from the overall integration
in all space occupied by the atoms is actually a macroscopic
quantity. With the equation of state � = �(N/V,T ), the phase
diagram for the transition can be fully described based on

measured macroscopic quantities of the global system, without
the necessity of considering the corresponding local uniform
system as done with the LDA.

Additional insight into the physics of � can be gained by
noticing the additional identity [12]

�V =
∫

p(�r)d3r, (4)

showing that the pressure parameter � is actually proportional
to the integral of the local hydrostatic pressure p(�r) over
all space. To obtain this result we need to remember that
mechanical equilibrium in the fluid is determined by the
balance of local forces, namely, �∇p(�r) + n(�r) �∇Vext(�r) = 0.
By using Eq. (3), the integration of the virial of these forces
�r · �f leads to Eq. (4). A similar mechanical equilibrium
argument has also been used by Horikoshi et al. [6].

III. EXPERIMENTAL SYSTEM AND MEASUREMENTS

To measure the quantities involved in Eq. (3) across BEC
transition we have used an experimental setup composed of
a double magneto-optical trap (MOT) and a quadrupole–
Ioffe-configuration (QUIC) type of trap. The system has been
described in detail elsewhere [19]. In brief, we collect 109

87Rb atoms in a MOT, producing a sample at approximately
100 μK. After a population transfer to the |2,2〉 hyperfine
state, the sample is used to load a QUIC magnetic trap.
While trapped, a rf-induced evaporation is applied to obtain
quantum degeneracy. The trapping potential is harmonic with
frequencies ωx = ω0 and ωy = ωz = 9ω0, where ω0 = 2π ×
23 Hz. The characterization of the sample is done by absorption
imaging it on a CCD camera after a 15-ms time of flight. We
typically produce BEC samples containing (1–7)×105 atoms.

Each acquired image is fitted with a bimodal distribution
composed of a Gaussian and an inverted parabola (Thomas-
Fermi distribution), which represent, respectively, the thermal
cloud and the condensate part. The quality of the images in our
experiment allows good fittings, which are necessary for two
reasons. First, the absorption image gives us a two-dimensional
profile from which it is impossible to determine the three-
dimensional one without assumptions. Second, since we have
a time-of-flight image, we need the fitting parameters of the
expanded cloud to determine the in situ profile n(�r) used to
calculate � through Eq. (3). For the thermal part and the
condensate part, the in situ profile is obtained by considering
a ballistic expansion and by applying the theory developed
by Castin and Dum [20], respectively. From those fittings, the
temperature T , the number of condensed atoms N0, and the
total number of atoms N are obtained. Finally, by using Eq. (3)
we obtain the pressure parameter �.

For the experiment reported here we have kept the trap
frequencies fixed, that is, V = constant. The temperature and
number of atoms were varied by controlling the evaporative
cooling final frequency and the time of evaporation [19].
Since our experiment is supposed to test the equation of state,
we should perform experiments including the variation of V
(trapping potential frequencies). However, with our present
experimental system this is a very hard task. Variations on
the trapping frequencies cause a displacement of the potential
minimum as well as the evaporation conditions. The use of
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an optical trap instead of a full magnetic QUIC one would be
more appropriate for this purpose.

IV. RESULTS AND DISCUSSION

We have performed about 300 runs of the experiment
and grouped the results with a similar number of particles
for different temperatures. In the first group the number of
particles varies 33% around the average value of 1.2 ×105

atoms. In the second group the variation is 21% in 2.4 ×105

atoms and for the other three groups the number of particles
varies less than 10% around the respective average. Therefore,
the data in each group were considered as belonging to an
isodensity (practically the same number of particles) for all
temperatures. Since we are expressing � = �(N/V,T ), the
experiment corresponds to the investigation of the isodensities
� vs T , while the density parameter N/V remains constant
in each group. The results of this experiment are shown
in Fig. 1. For a fixed density parameter we observe two
different regions of behavior as T decreases. First, for high
temperatures, � has an almost linear dependence on both T

and N/V (which is the prediction of an ideal Bose gas above
BEC), until an abrupt change takes place, and the decrease
of � with T becomes faster than linear. This change of
behavior characterizes the critical temperature Tc = Tc(N/V)
where BEC takes place. This change was also detected in
the corresponding density profiles, that is, those below Tc

showed the characteristic peak of the condensate. The lines
used to connect the points in Fig. 1 are empirical fittings.
Above Tc the data were fitted by a linear function and below Tc

exponential functions were used. The critical point (�c,Tc) for
each density parameter was determined by the crossing point
of these lines for each isodensity. Following the definition of
� from Eq. (2) and considering the fact that for T > Tc the
density clouds are very well fitted by a Gaussian profile, the
mentioned linear dependence is expected. That is, if one con-

×
×
×
×
×

FIG. 1. (Color online) Pressure parameter � as a function of
temperature T for different constant numbers of particles N , crossing
their corresponding critical temperature Tc(N/V). Solid lines are
fittings with empirical functions. Above Tc the data were fitted by a
linear function and below Tc exponential functions were used. From
the fittings we have extracted the value of � at T = 0.

siders the Bose distribution of particles in the noninteracting
approximation

� ≈ NkBT

V
g4(z)

g3(z)
(ideal gas) (5)

and

N ≈ V
(

kBT

h̄

)3

g3(z) (ideal gas), (6)

with gn(z) the Bose function and z = exp(μ/kBT ) the fu-
gacity, the deviation from linearity of �, in T and N/V , is
rather small since 1 � g4(z)/g3(z) � 0.9. Even if Hartree-
Fock corrections are included [11], the dependence of � on
T remains very close to linear for T > Tc. Below Tc, the
behavior of � is intrinsically related to the superfluid nature of
the gas, depending very strongly now on the magnitude of the
interparticle interaction. That is, if the interparticle interactions
played no role, all the curves below Tc in Fig. 1 would lie on
the top of each other, as expected for an ideal gas.

From Fig. 1 one can determine the critical points and extract
the phase diagram � vs T shown in Fig. 2, where the critical
line �c vs Tc separates the thermodynamic states into two
domains, one where the fluid is fully thermal and the other
where there is a superposition of a Bose condensate fluid
with a thermal component. The curve �c vs Tc represents
what is expected to be a continuous phase transition [18]
between a normal gas and a superfluid in an interacting Bose
fluid confined by a harmonic trap. This curve has a shape
that recalls the celebrated 4He phase diagram separating the
superfluid from the normal fluid phase. For completeness
we have reproduced in Fig. 3 the adopted diagram for 4He
[21,22] equivalent to Fig. 2. Compared to 4He there are a
few peculiarities related to the present system that we address
below. If the gas were ideal one should obtain �c ∼ T 4

c at
the transition line; however, a logarithmic plot reveals that a
simple law �T γ = const is not obeyed for γ constant. The
exponent becomes larger as the temperature decreases. This
feature, as well as those discussed below, is certainly due to

FIG. 2. Phase diagram presenting the critical points �c vs Tc. The
BEC transition line separates the two phases: purely thermal cloud
and thermal cloud plus condensate.
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FIG. 3. Saturated vapor pressure versus temperature for 4He from
Refs. [21,22]. The curve divides the superfluid and the normal fluid
regions.

the influence of interactions below Tc and to the presence of
the confining potential.

Returning to Fig. 1, we now analyze data for each isodensity
curve (density parameter constant) for temperatures below Tc.
These points are presented in Fig. 4. Note that higher isodensity
curves produce higher pressure parameter values at a given
temperature. This appears as expected from an overall analysis
of these variables in harmonic [11] and linear quadrupolar [13]
traps using the Hartree-Fock approximation. The extrapolation
of the experimental points in Fig. 4, represented by the solid
lines, allows the determination of �0 = �(N/V,T = 0), the
zero-temperature pressure parameter, which depends on the
pure condensate density without the presence of the thermal
component. At T = 0, the Thomas-Fermi approximation
(TFA) works on its best conditions. Therefore, by using the

×
×
×
×
×

FIG. 4. (Color online) Detail of pressure parameter dependence
on temperature for different fixed numbers of particles � =
�(N/V,T ) in the BEC region. The extrapolation of the experimental
points allows for the determination of the pressure parameter at
T = 0.

TFA and LDA [16,17] and assuming a cloud of N interacting
atoms with scattering length a, Eq. (3) at T = 0 yields

�0 = 1
7 (15h̄2a

√
m)2/5(Nω2

r ωz)7/5. (7)

It is found then that at T = 0 the pressure parameter scales
with the number of particles (keeping V fixed) as �0 ∼ Nδ . A
log-log plot of the values found from Fig. 4 yields the value
δ = 1.5+0.3

−0.2, well within the expected value 1.4 predicted by the
TFA. The use of expression (7) together with the data presented
in Fig. 4 allows the determination of the scattering length, fully
based on global thermodynamic quantities. We have obtained
for the scattering length the value a = 94 ± 32 Å, which is
a bit higher than the real value of approximately 50 Å [23].
Naturally, as the temperature decreases we have less data for
a high number of atoms, which is intrinsically related to the
evaporation process. The absence of experimental points at
lower temperatures makes the determination of �0 subjected
to a higher imprecision. This is associated with the discrepancy
of values for the scattering length.

As with standard pressure and volume in uniform fluid
systems, the variables � and V provide us with a macroscopic
thermodynamic description of the fluid without the necessity
of relying on the LDA. Because of the physical connection
between the parameters (�,V) with (p,V ), the phase diagram
reveals interesting macroscopic features not yet considered
along the phase transition for the formation of a superfluid
atomic phase in a trap.

It is interesting to compare the phase diagram � vs T of
Fig. 2 to the corresponding diagram for the superfluid transition
of 4He in Fig. 3. Nevertheless, we also insist on the profound
differences between considering a local picture and a global or
thermodynamic one of a confined system. If studies were made
of local variables only, the phase diagram obtained would refer
to the bulk system and the transition line would not yield the
information of the occurrence of BEC in the trapped gas. That
is, knowledge of the bulk phase diagram solely does not allow a
direct calculation of the phase diagram of the inhomogeneous
trapped gas. One first needs full knowledge of the number
particle density n = N/V and hydrostatic pressure p of the
homogeneous gas as a function of both chemical potential μ

and temperature T , i.e., n(μ,T ) and p(μ,T ). Then, using the
LDA with the harmonic potential, a reconstruction of the phase
diagram � vs T such as in Fig. 1 could be made. However, BEC
occurs in the trapped inhomogeneous gas and this information
is succinctly contained in the phase diagram of Figs. 1 and 2.

The use of a single macroscopic thermodynamic parameter
� = �(N/V,T ) to describe the phase transition will allow us
to go further in many aspects. One of the main motivations
is the possibility of making a thermodynamic description
for turbulent phenomena in atomic superfluids held in traps.
Analyses comparing the variation of � when turbulence occurs
remain a goal for further experiments.

V. CONCLUSION

To summarize, we have demonstrated the use of a single
macroscopic thermodynamic quantity to describe the BEC
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in an inhomogeneous system. The ability to describe an
inhomogeneous quantum gas via macroscopic parameters
creates a means to access other thermodynamic quantities
proper of the trapped gas that cannot be accessed using local
variables within the LDA. It can be shown that the heat
capacity may be obtained by full knowledge of the equation
of state � = �(N/V,T ) and by independent temperature
measurements of adiabatic changes of the volume parameter
[13]. This last aspect requires a variation in the trap frequencies
and an optical trap seems more appropriate than a magnetic
QUIC one, as used in the present experiments.
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