16 research outputs found

    Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells

    Get PDF
    心臓組織シートを、細胞が生きた状態で簡便に積層化する方法の開発. 京都大学プレスリリース. 2015-11-27.Poor engraftment of cells after transplantation to the heart is a common and unresolved problem in the cardiac cell therapies. We previously generated cardiovascular cell sheets entirely from pluripotent stem cells with cardiomyocytes, endothelial cells and vascular mural cells. Though sheet transplantation showed a better engraftment and improved cardiac function after myocardial infarction, stacking limitation (up to 3 sheets) by hypoxia hampered larger structure formation and long-term survival of the grafts. Here we report an efficient method to overcome the stacking limitation. Insertion of gelatin hydrogel microspheres (GHMs) between each cardiovascular cell sheet broke the viable limitation via appropriate spacing and fluid impregnation with GHMs. Fifteen sheets with GHMs (15-GHM construct; >1mm thickness) were stacked within several hours and viable after 1 week in vitro. Transplantation of 5-GHM constructs (≈2×106 of total cells) to a rat myocardial infarction model showed rapid and sustained functional improvements. The grafts were efficiently engrafted as multiple layered cardiovascular cells accompanied by functional capillary networks. Large engrafted cardiac tissues (0.8mm thickness with 40 cell layers) successfully survived 3 months after TX. We developed an efficient method to generate thicker viable tissue structures and achieve long-term survival of the cell graft to the heart

    Dasatinib attenuates airway inflammation of asthma exacerbation in mice induced by house dust mites and dsRNA

    No full text
    Asthma exacerbation is a significant clinical problem that causes resistance to corticosteroid therapy and elevated hospitalization risk. Src family kinases (SFKs) contribute to various steps of the immune response, such as airway inflammation in viral or bacterial infections and allergic asthma. Therefore, we determined the effects of dasatinib (DAS), a typical Src inhibitor, on a murine asthma exacerbation model induced by house dust mites (HDM) and synthetic analog of double-stranded RNA, poly(I:C). A/J mice were sensitized to intrapreneurial HDM twice every seven days and challenged with intranasal HDM once every second day for a total of six exposures, and/or exposed to poly(I:C) twice daily for three consecutive days. Drug treatments were performed twice daily for three days, starting one day after the last HDM challenge or 2 h before each poly(I:C) exposure. DAS improved poly(I:C)-induced acute inflammation dose-dependently. Both DAS and fluticasone propionate (FP) attenuated HDM-induced allergic airway inflammation. However, in HDM and poly(I:C) induced-asthma exacerbated mice, DAS significantly improved inflammatory cells in bronchoalveolar lavage fluid and histological changes in the lungs, whereas FP did not. Therefore, SFKs are important targets for controlling severe asthma refractory to conventional therapies

    Table_2_Metabolism-linked methylotaxis sensors responsible for plant colonization in Methylobacterium aquaticum strain 22A.xlsx

    No full text
    Motile bacteria take a competitive advantage in colonization of plant surfaces to establish beneficial associations that eventually support plant health. Plant exudates serve not only as primary growth substrates for bacteria but also as bacterial chemotaxis attractants. A number of plant-derived compounds and corresponding chemotaxis sensors have been documented, however, the sensors for methanol, one of the major volatile compounds released by plants, have not been identified. Methylobacterium species are ubiquitous plant surface-symbiotic, methylotrophic bacteria. A plant-growth promoting bacterium, M. aquaticum strain 22A exhibits chemotaxis toward methanol (methylotaxis). Its genome encodes 52 methyl-accepting chemotaxis proteins (MCPs), among which we identified three MCPs (methylotaxis proteins, MtpA, MtpB, and MtpC) responsible for methylotaxis. The triple gene mutant of the MCPs exhibited no methylotaxis, slower gathering to plant tissues, and less efficient colonization on plants than the wild type, suggesting that the methylotaxis mediates initiation of plant-Methylobacterium symbiosis and engages in proliferation on plants. To examine how these MCPs are operating methylotaxis, we generated multiple gene knockouts of the MCPs, and Ca2+-dependent MxaFI and lanthanide (Ln3+)-dependent XoxF methanol dehydrogenases (MDHs), whose expression is regulated by the presence of Ln3+. MtpA was found to be a cytosolic sensor that conducts formaldehyde taxis (formtaxis), as well as methylotaxis when MDHs generate formaldehyde. MtpB contained a dCache domain and exhibited differential cellular localization in response to La3+. MtpB expression was induced by La3+, and its activity required XoxF1. MtpC exhibited typical cell pole localization, required MxaFI activity, and was regulated under MxbDM that is also required for MxaF expression. Strain 22A methylotaxis is realized by three independent MCPs, two of which monitor methanol oxidation by Ln3+-regulated MDHs, and one of which monitors the common methanol oxidation product, formaldehyde. We propose that methanol metabolism-linked chemotaxis is the key factor for the efficient colonization of Methylobacterium on plants.</p

    Data_Sheet_1_Metabolism-linked methylotaxis sensors responsible for plant colonization in Methylobacterium aquaticum strain 22A.pdf

    No full text
    Motile bacteria take a competitive advantage in colonization of plant surfaces to establish beneficial associations that eventually support plant health. Plant exudates serve not only as primary growth substrates for bacteria but also as bacterial chemotaxis attractants. A number of plant-derived compounds and corresponding chemotaxis sensors have been documented, however, the sensors for methanol, one of the major volatile compounds released by plants, have not been identified. Methylobacterium species are ubiquitous plant surface-symbiotic, methylotrophic bacteria. A plant-growth promoting bacterium, M. aquaticum strain 22A exhibits chemotaxis toward methanol (methylotaxis). Its genome encodes 52 methyl-accepting chemotaxis proteins (MCPs), among which we identified three MCPs (methylotaxis proteins, MtpA, MtpB, and MtpC) responsible for methylotaxis. The triple gene mutant of the MCPs exhibited no methylotaxis, slower gathering to plant tissues, and less efficient colonization on plants than the wild type, suggesting that the methylotaxis mediates initiation of plant-Methylobacterium symbiosis and engages in proliferation on plants. To examine how these MCPs are operating methylotaxis, we generated multiple gene knockouts of the MCPs, and Ca2+-dependent MxaFI and lanthanide (Ln3+)-dependent XoxF methanol dehydrogenases (MDHs), whose expression is regulated by the presence of Ln3+. MtpA was found to be a cytosolic sensor that conducts formaldehyde taxis (formtaxis), as well as methylotaxis when MDHs generate formaldehyde. MtpB contained a dCache domain and exhibited differential cellular localization in response to La3+. MtpB expression was induced by La3+, and its activity required XoxF1. MtpC exhibited typical cell pole localization, required MxaFI activity, and was regulated under MxbDM that is also required for MxaF expression. Strain 22A methylotaxis is realized by three independent MCPs, two of which monitor methanol oxidation by Ln3+-regulated MDHs, and one of which monitors the common methanol oxidation product, formaldehyde. We propose that methanol metabolism-linked chemotaxis is the key factor for the efficient colonization of Methylobacterium on plants.</p

    Table_1_Metabolism-linked methylotaxis sensors responsible for plant colonization in Methylobacterium aquaticum strain 22A.xlsx

    No full text
    Motile bacteria take a competitive advantage in colonization of plant surfaces to establish beneficial associations that eventually support plant health. Plant exudates serve not only as primary growth substrates for bacteria but also as bacterial chemotaxis attractants. A number of plant-derived compounds and corresponding chemotaxis sensors have been documented, however, the sensors for methanol, one of the major volatile compounds released by plants, have not been identified. Methylobacterium species are ubiquitous plant surface-symbiotic, methylotrophic bacteria. A plant-growth promoting bacterium, M. aquaticum strain 22A exhibits chemotaxis toward methanol (methylotaxis). Its genome encodes 52 methyl-accepting chemotaxis proteins (MCPs), among which we identified three MCPs (methylotaxis proteins, MtpA, MtpB, and MtpC) responsible for methylotaxis. The triple gene mutant of the MCPs exhibited no methylotaxis, slower gathering to plant tissues, and less efficient colonization on plants than the wild type, suggesting that the methylotaxis mediates initiation of plant-Methylobacterium symbiosis and engages in proliferation on plants. To examine how these MCPs are operating methylotaxis, we generated multiple gene knockouts of the MCPs, and Ca2+-dependent MxaFI and lanthanide (Ln3+)-dependent XoxF methanol dehydrogenases (MDHs), whose expression is regulated by the presence of Ln3+. MtpA was found to be a cytosolic sensor that conducts formaldehyde taxis (formtaxis), as well as methylotaxis when MDHs generate formaldehyde. MtpB contained a dCache domain and exhibited differential cellular localization in response to La3+. MtpB expression was induced by La3+, and its activity required XoxF1. MtpC exhibited typical cell pole localization, required MxaFI activity, and was regulated under MxbDM that is also required for MxaF expression. Strain 22A methylotaxis is realized by three independent MCPs, two of which monitor methanol oxidation by Ln3+-regulated MDHs, and one of which monitors the common methanol oxidation product, formaldehyde. We propose that methanol metabolism-linked chemotaxis is the key factor for the efficient colonization of Methylobacterium on plants.</p

    Biopsy-proven case of Epstein-Barr virus (EBV)-associated vasculitis of the central nervous system.

    Get PDF
    A 75-year-old woman was admitted to our hospital with rapidly deteriorating consciousness disturbance. She had a 7-year history of rheumatoid arthritis (RA), which had been treated with methotrexate (MTX) and prednisolone. Brain T2-weighted MRI showed diffuse high-intensity lesions in the cerebral subcortical and deep white matter, bilateral basal ganglia and thalamus. A cerebrospinal fluid examination revealed elevated protein levels and positive Epstein-Barr virus (EBV) DNA. Human immunodeficiency virus was negative. Brain biopsy showed perivascular lymphocytic infiltration in the parenchyma and meninx with EBV-encoded small RNA (EBER). Since this case did not fulfill the criteria for chronic active EBV infection (CAEBV), she was diagnosed with Epstein-Barr virus (EBV)-associated vasculitis of the central nervous system. High-dose methylprednisolone, acyclovir, ganciclovir and foscarnet were not effective. Although EBV is a causative agent of infectious mononucleosis (IM), lymphomas and nasopharyngeal carcinomas, vasculitic pathology of the central nervous system with EBV reactivation in the elderly is rare. Immunosuppressive drugs such as steroids and MTX are widely used to treat autoimmune disorders, but may exacerbate the reactivation of EBV. This is the first case of biopsy-proven EBV-positive/HIV-negative vasculitis during the treatment of RA with MTX and steroids. This case indicates that EBV-associated vasculitis needs to be considered as a differential diagnosis of CNS vasculitis
    corecore