16 research outputs found

    Two Novel Mutations in the EYS Gene Are Possible Major Causes of Autosomal Recessive Retinitis Pigmentosa in the Japanese Population

    Get PDF
    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease including autosomal recessive (ar), autosomal dominant (ad), and X-linked inheritance. Recently, arRP has been associated with mutations in EYS (Eyes shut homolog), which is a major causative gene for this disease. This study was conducted to determine the spectrum and frequency of EYS mutations in 100 Japanese arRP patients. To determine the prevalence of EYS mutations, all EYS exons were screened for mutations by polymerase chain reaction amplification, and sequence analysis was performed. We detected 67 sequence alterations in EYS, of which 21 were novel. Of these, 7 were very likely pathogenic mutations, 6 were possible pathogenic mutations, and 54 were predicted non-pathogenic sequence alterations. The minimum observed prevalence of distinct EYS mutations in our study was 18% (18/100, comprising 9 patients with 2 very likely pathogenic mutations and the remaining 9 with only one such mutation). Among these mutations, 2 novel truncating mutations, c.4957_4958insA (p.S1653KfsX2) and c.8868C>A (p.Y2956X), were identified in 16 patients and accounted for 57.1% (20/35 alleles) of the mutated alleles. Although these 2 truncating mutations were not detected in Japanese patients with adRP or Leber's congenital amaurosis, we detected them in Korean arRP patients. Similar to Japanese arRP results, the c.4957_4958insA mutation was more frequently detected than the c.8868C>A mutation. The 18% estimated prevalence of very likely pathogenic mutations in our study suggests a major involvement of EYS in the pathogenesis of arRP in the Japanese population. Mutation spectrum of EYS in 100 Japanese patients, including 13 distinct very likely and possible pathogenic mutations, was largely different from the previously reported spectrum in patients from non-Asian populations. Screening for c.4957_4958insA and c.8868C>A mutations in the EYS gene may therefore be very effective for the genetic testing and counseling of RP patients in Japan

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Predicted domain structure and distribution of identified <i>EYS</i> mutations.

    No full text
    <p>SMART (<a href="http://smart.embl-heidelberg.de/" target="_blank">http://smart.embl-heidelberg.de/</a>) and Pfam (<a href="http://pfam.sanger.ac.uk/" target="_blank">http://pfam.sanger.ac.uk/</a>) were used to search protein functional domains. A coiled-coil domain identified by Barragán et al. (2010) between the EGF-like domain and laminin G domain was also indicated. Novel very likely pathogenic mutations, novel possible pathogenic mutations, and a previously described mutation are shown in bold, normal, and italic type, respectively. Six out of 9 missense mutations were found in the EGF or laminin G domains. Furthermore, 7 were located in the latter half of the protein between the putative coiled-coil region and C-terminus.</p

    Electropherograms of the 6 likely pathogenic <i>EYS</i> mutations.

    No full text
    <p>Partial sequence of the <i>EYS</i> gene showing the normal control sequences (A-1 through F-1), heterozygous mutation sequences (A-2 through F-2), and homozygous mutation sequences (A-3 and C-3). Deduced amino acids are indicated under the sequence trace. The mutation location is indicated either by an arrow (for a nucleotide change) or a horizontal line (to show 2 nucleotides between which the insertion occurred). (A) c.4957_4958insA; p.S1653KfsX2 (Exon 26), (B) c.6557G>A; p.G2186E (Exon 32), (C) c.8868C>A; p.Y2956X (Exon 44), (D) c.8351T>G; p.L2784R (Exon 44), (E) c.7793G>A; p.G2598D (Exon 40), (F) c.2522_2523insA; p.Y841X (Exon 16).</p

    Pedigrees of the families that was available for mutation analysis.

    No full text
    <p>Below the individuals, genotypes are presented for either p.S1653KfsX2 (M1), p.L2784R (M2), p.Y2956X (M3), p.Y841X (M4), or p.G2186E (M5) detected to segregate with RP. M1/M1 represents homozygous mutation. M1/+ indicates heterozygous carriers, +/+ indicates individuals carrying 2 wild-type alleles, whereas M1/M2 represents individuals presenting both mutations as compound heterozygous. Square boxes indicate men, circles denote women, and affected individuals are pointed out by a black symbol. Slashed symbols indicate deceased individuals. The probands are indicated with an arrow. NA denotes unavailable DNA samples.</p
    corecore