120 research outputs found

    Grass Silage: Factors Affecting Efficiency of N Utilisation in Milk Production

    Get PDF
    Key points Low efficiency of N utilisation for milk production in cows fed grass silage-based diets is mainly due to excessive N losses in the rumen. The type and extent of in silo fermentation can alter the balance of absorbed nutrients. There is very little experimental evidence that the capture of N in the rumen can be improved by a better synchrony between energy and N release in the rumen. Nitrogen losses in the rumen can be reduced by decreasing the ratio between rumen degradable N and fermentable energy. Rapeseed meal has increased milk protein output more than isonitrogenous soybean meal supplementation, probably due to higher concentration of histidine in rapeseed protein. Efficiency of N utilisation for milk production is not necessarily lower for the grass silage based diets compared to other diets

    Between-cow variation in milk fatty acids associated with methane production

    Get PDF
    We evaluated the between-cow (b-cow) variation and repeatability in omasal and milk fatty acids (FA) related to methane (CH4) emission. The dataset was originated from 9 studies with rumen-cannulated dairy cows conducted using either a switch-back or a Latin square design. Production of CH(4)per mole of VFA (Y_CH(4)VFA) was calculated based on VFA stoichiometry. Experiment, diet within experiment, period within experiment, and cow within experiment were considered as random factors. Empirical models were developed between the variables of interest by univariate and bivariate mixed model regression analysis. The variation associated with diet was higher than the b-cow variation with low repeatability (< 0.25) for milk odd- and branch-chain FA (OBCFA). Similarly, for de novo synthesized milk FA, diet variation was similar to 3-fold greater than the b-cow variation; repeatability for these FA was moderate to high (0.34-0.58). Also, for bothcis-9 C18:1 andcis-9cis-12cis-15 C18:3 diet variation was more than double the b-cow variation, but repeatability was moderate. Among the de novo milk FA, C4:0 was positively related with stoichiometric Y_CH(4)VFA, while for OBCFA,anteisoC15:0 and C15:0 were negatively related with it. Notably, when analyzing the relationship between omasal FA and milk FA we observed positive intercept estimates for all the OBCFA, which may indicate endogenous post-ruminal synthesis of these FA, most likely in the mammary gland. For milkisoC13:0,isoC15:0,anteisoC15:0, and C15:0 were positively influenced by omasal proportion of their respective FA and by energy balance. In contrast, the concentration of milk C17:0,isoC18:0, C18:0,cis-11 C18:1, andcis-9cis-12cis-15 C18:3 were positively influenced by omasal proportion of their respective FA but negatively related to calculated energy balance. Our findings demonstrate that for most milk FA examined, a larger variation is attributed to diet than b-cow differences with low to moderate repeatability. While some milk FA were positively or negatively related with Y_CH(4)VFA, there was a pronounced effect of calculated energy balance on these estimates. Additionally, even though OBCFA have been indicated as markers of rumen function, our results suggest that endogenous synthesis of these FA may occur, which therefore, may limit the utilization of milk FA as a proxy for CH(4)predictions for cows fed the same diet

    Correspondence

    Get PDF
    quantification, real-time PCR, rumen, stearic acid producers

    Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller

    Get PDF
    Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis9,cis-12, cis-15 18:3 (alpha-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91 d in milk) were used in replicated 4 x 4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12 kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (Peer reviewe

    A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions

    Get PDF
    A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture
    • …
    corecore