404 research outputs found

    The validity of police reported accident data

    Full text link
    Information theory and signal detection theory techniques were used to assess the validity of police reported traffic accident data. The validity criteria were the data and conclusions of multi-disciplinary accident investigation teams who investigated the same traffic accidents. The results indicated that the accident level variables reported by the police with least reliability were vertical road character, accident severity, and road surface composition. The most reliably reported data were those concerned with the accident location, date, and number of drivers, passengers, and vehicles. The informativeness of the police reports with respect to driver/vehicle characteristics was practically nil, with the exception of driver age, sex and vehicle model for which the police were correct most of the time (but not errorless). It was also found that police reports provided very little information regarding the presence of different human conditions and states, vehicle defects and environmental/road deficiencies. The sensitivity of police investigators to all accident causes was low. When causes were categorized into human direct, human indirect (conditions and states) vehicle, and environmental, police were the most reliable with respect to human direct causes and the least reliable with respect to environmental and human indirect causes. Implications for improvement and use of police data are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25202/1/0000641.pd

    Practice characteristics of Emergency Department extracorporeal cardiopulmonary resuscitation (eCPR) programs in the United States: The current state of the art of Emergency Department extracorporeal membrane oxygenation (ED ECMO).

    Get PDF
    PURPOSE: To characterize the current scope and practices of centers performing extracorporeal cardiopulmonary resuscitation (eCPR) on the undifferentiated patient with cardiac arrest in the emergency department. METHODS: We contacted all US centers in January 2016 that had submitted adult eCPR cases to the Extracorporeal Life Support Organization (ELSO) registry and surveyed them, querying for programs that had performed eCPR in the Emergency Department (ED ECMO). Our objective was to characterize the following domains of ED ECMO practice: program characteristics, patient selection, devices and techniques, and personnel. RESULTS: Among 99 centers queried, 70 responded. Among these, 36 centers performed ED ECMO. Nearly 93% of programs are based at academic/teaching hospitals. 65% of programs are less than 5 years old, and 60% of programs perform ≤3 cases per year. Most programs (90%) had inpatient eCPR or salvage ECMO programs prior to starting ED ECMO programs. The majority of programs do not have formal inclusion and exclusion criteria. Most programs preferentially obtain vascular access via the percutaneous route (70%) and many (40%) use mechanical CPR during cannulation. The most commonly used console is the Maquet Rotaflow(®). Cannulation is most often performed by cardiothoracic (CT) surgery, and nearly all programs (\u3e85%) involve CT surgeons, perfusionists, and pharmacists. CONCLUSIONS: Over a third of centers that submitted adult eCPR cases to ELSO have performed ED ECMO. These programs are largely based at academic hospitals, new, and have low volumes. They do not have many formal inclusion or exclusion criteria, and devices and techniques are variable

    Electronic Structure of Lanthanum Hydrides with Switchable Optical Properties

    Full text link
    Recent dramatic changes in the optical properties of LaH_{2+x} and YH_{2+x} films discovered by Huiberts et al. suggest their electronic structure is described best by a local model. Electron correlation is important in H^- -centers and in explaining the transparent insulating behavior of LaH_3. The metal-insulator transition at x0.8x\sim 0.8 takes place in a band of highly localized states centered on the HH-vacancies in the LaH_3 structure.Comment: plain tex, 3 figure

    Rules for biological regulation based on error minimization

    Full text link
    The control of gene expression involves complex mechanisms that show large variation in design. For example, genes can be turned on either by the binding of an activator (positive control) or the unbinding of a repressor (negative control). What determines the choice of mode of control for each gene? This study proposes rules for gene regulation based on the assumption that free regulatory sites are exposed to nonspecific binding errors, whereas sites bound to their cognate regulators are protected from errors. Hence, the selected mechanisms keep the sites bound to their designated regulators for most of the time, thus minimizing fitness-reducing errors. This offers an explanation of the empirically demonstrated Savageau demand rule: Genes that are needed often in the natural environment tend to be regulated by activators, and rarely needed genes tend to be regulated by repressors; in both cases, sites are bound for most of the time, and errors are minimized. The fitness advantage of error minimization appears to be readily selectable. The present approach can also generate rules for multi-regulator systems. The error-minimization framework raises several experimentally testable hypotheses. It may also apply to other biological regulation systems, such as those involving protein-protein interactions.Comment: biological physics, complex networks, systems biology, transcriptional regulation http://www.weizmann.ac.il/complex/tlusty/papers/PNAS2006.pdf http://www.pnas.org/content/103/11/3999.ful

    Design of high-magnetic field gradient sources for controlling magnetically induced flow of ferrofluids in microfluidic systems

    Get PDF
    The use of miniature electromagnets for ferrofluid-actuated liquid dispensing into microfluidic channels has been investigated by numerical simulations using the finite element method and measurements of fluid displacement and flow rate. The simulations illustrate the effect of structural and geometrical parameters of single and paired solenoid coils on the magnetic force experienced by the ferrofluid. Dual solenoids were used for extended fluid displacement. Ferrofluid positioning and flow rates were controlled also by using a solenoid with an iron core. The experimental measurements of fluidflow in capillaries were used to validate the modeling calculations. The results can be used as a basis for the development of on-chip ferrofluid-based devices integrated with microfluidic architectures

    Theory for Metal Hydrides with Switchable Optical Properties

    Full text link
    Recently it has been discovered that lanthanum, yttrium, and other metal hydride films show dramatic changes in the optical properties at the metal-insulator transition. Such changes on a high energy scale suggest the electronic structure is best described by a local model based on negatively charged hydrogen (H^-) ions. We develop a many-body theory for the strong correlation in a H^- ion lattice. The metal hydride is described by a large UU-limit of an Anderson lattice model. We use lanthanum hydride as a prototype of these compounds, and find LaH3_3 is an insulator with a substantial gap consistent with experiments. It may be viewed either as a Kondo insulator or a band insulator due to strong electron correlation. A H vacancy state in LaH3_3 is found to be highly localized due to the strong bonding between the electron orbitals of hydrogen and metal atoms. Unlike the impurity states in the usual semiconductors, there is only weak internal optical transitions within the vacancy. The metal-insulator transition takes place in a band of these vacancy states.Comment: 18 pages, 16 figures and 6 tables. Submitted to PR

    Robustness in Glyoxylate Bypass Regulation

    Get PDF
    The glyoxylate bypass allows Escherichia coli to grow on carbon sources with only two carbons by bypassing the loss of carbons as CO2 in the tricarboxylic acid cycle. The flux toward this bypass is regulated by the phosphorylation of the enzyme isocitrate dehydrogenase (IDH) by a bifunctional kinase–phosphatase called IDHKP. In this system, IDH activity has been found to be remarkably robust with respect to wide variations in the total IDH protein concentration. Here, we examine possible mechanisms to explain this robustness. Explanations in which IDHKP works simultaneously as a first-order kinase and as a zero-order phosphatase with a single IDH binding site are found to be inconsistent with robustness. Instead, we suggest a robust mechanism where both substrates bind the bifunctional enzyme to form a ternary complex

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors
    corecore