82 research outputs found

    ZASTOSOWANIE WYŁADOWANIA ELEKTRYCZNEGO DO OZONOWANIA GLEBY

    Get PDF
    In this study, influence of ozone treatment on physical properties of soil was investigated. We used a quartz container for ozone treatment of soil. The amount of soil used for treatment was 100 g. Treating time was 90 minutes. Flow rate of ozone gas was 1.5 L/min. We measured characteristics of soil such as inorganic nutrient (NO3-N, NO2-N, and NH4-N), pH(H2O), fungi, DNA of soil, and exchangeable bases (Ca, K, Fe, and Al) before and after ozone treatment.W niniejszym opracowaniu, opisano badania wpływu obróbki ozonem na własności fizyczne gleby. Do ozonowania gleby wykorzystaliśmy pojemnik kwarcowy. Ilość gleby poddanej działaniu ozonu wynosiła 100g, a czas oddziaływania 90 minut. Przepływ ozonu wyniósł 1.5l/min. Mierzono właściwości gleby, takie jak nieorganiczne składniki odżywcze (NO3-N, NO2-N i NH4-N), pH(H2O), grzyby, DNA w glebie i zasady wymienne (Ca, K, Fe i Al) przed i po poddaniu jej działaniu ozonu

    ZASTOSOWANIE WYŁADOWANIA ELEKTRYCZNEGO DO OZONOWANIA GLEBY

    Get PDF
    In this study, influence of ozone treatment on physical properties of soil was investigated. We used a quartz container for ozone treatment of soil. The amount of soil used for treatment was 100 g. Treating time was 90 minutes. Flow rate of ozone gas was 1.5 L/min. We measured characteristics of soil such as inorganic nutrient (NO3-N, NO2-N, and NH4-N), pH(H2O), fungi, DNA of soil, and exchangeable bases (Ca, K, Fe, and Al) before and after ozone treatment.W niniejszym opracowaniu, opisano badania wpływu obróbki ozonem na własności fizyczne gleby. Do ozonowania gleby wykorzystaliśmy pojemnik kwarcowy. Ilość gleby poddanej działaniu ozonu wynosiła 100g, a czas oddziaływania 90 minut. Przepływ ozonu wyniósł 1.5l/min. Mierzono właściwości gleby, takie jak nieorganiczne składniki odżywcze (NO3-N, NO2-N i NH4-N), pH(H2O), grzyby, DNA w glebie i zasady wymienne (Ca, K, Fe i Al) przed i po poddaniu jej działaniu ozonu

    The Great Space Weather Event during February 1872 Recorded in East Asia

    Full text link
    The study of historical great geomagnetic storms is crucial for assessing the possible risks to the technological infrastructure of a modern society, caused by extreme space-weather events. The normal benchmark has been the great geomagnetic storm of September 1859, the so-called "Carrington Event". However, there are numerous records of another great geomagnetic storm in February 1872. This storm, about 12 years after the Carrington Event, resulted in comparable magnetic disturbances and auroral displays over large areas of the Earth. We have revisited this great geomagnetic storm in terms of the auroral and sunspot records in the historical documents from East Asia. In particular, we have surveyed the auroral records from East Asia and estimated the equatorward boundary of the auroral oval to be near 24.3 deg invariant latitude (ILAT), on the basis that the aurora was seen near the zenith at Shanghai (20 deg magnetic latitude, MLAT). These results confirm that this geomagnetic storm of February 1872 was as extreme as the Carrington Event, at least in terms of the equatorward motion of the auroral oval. Indeed, our results support the interpretation of the simultaneous auroral observations made at Bombay (10 deg MLAT). The East Asian auroral records have indicated extreme brightness, suggesting unusual precipitation of high-intensity, low-energy electrons during this geomagnetic storm. We have compared the duration of the East Asian auroral displays with magnetic observations in Bombay and found that the auroral displays occurred in the initial phase, main phase, and early recovery phase of the magnetic storm.Comment: 28 pages, 5 figures, accepted for publication in the Astrophysical Journal on 31 May 201

    Phase structure of the Higgs-Yukawa systems with chirally invariant lattice fermion actions

    Full text link
    We develop analytical technique for examining phase structure of Z2Z_2, U(1)U(1), and SU(2)SU(2) lattice Higgs-Yukawa systems with radially frozen Higgs fields and chirally invariant lattice fermion actions. The method is based on variational mean field approximation. We analyse phase diagrams of such systems with different forms of lattice fermion actions and demonstrate that it crucially depends both on the symmetry group and on the form of the action. We discuss location in the diagrams of possible non-trivial fixed points relevant to continuum physics, and argue that the candidates can exist only in Z2Z_2 system with SLAC action and U(1)U(1) systems with naive and SLAC actions. [Note: By a product, missing term in Eq. (3.5) of hep-lat/9309010 is reconstructed, that, however, affects only the result of Sect. 4.3 (Fig. 3) of that reference (cf. Fig. 2(c) of this paper).]Comment: KEK-TH-390, KYUSHU-HET-17, 34 pages (harvmac) including 17 figures (appended in postscript format with uuencoded tar file).(PostScript Files are fixed.

    Spatial Evolution of Wave‐Particle Interaction Region Deduced From Flash‐Type Auroras and Chorus‐Ray Tracing

    Get PDF
    In-situ observations of spatial variations of the wave-particle interaction region require a large number of satellite probes. As an alternative, flash-type auroras, a kind of pulsating aurora, driven by discrete chorus elements, can be used to investigate the interaction region with a high spatial resolution. We estimated the spatial extent of wave-particle interaction region from ground-based observations of flash aurora at Gakona (62.39°N, 214.78°E), Alaska at subauroral latitudes, and found that the auroral expansion was predominantly to the low-latitude side. The spatial displacement is thought to be caused by the propagation effects of chorus waves in the magnetosphere. Using ray tracing analysis to take into account chorus wave propagation, we reconstructed the spatiotemporal evolution of the volume emission rate and confirmed that the predominant expansion is toward the lower-latitude side in the ionosphere. This study shows that chorus wave propagation in the magnetosphere gives new insight for characterizing the transverse size (across the geomagnetic field line) of wave-particle interaction regions. The calculated spatial scale of the column auroral emission shows a correlation with the magnetic latitude of the resonance region at magnetic latitudes within 10° of the equatorial plane of the magnetosphere. Our results suggest that the spatial scale of a flash aurora is indirectly related to the chorus amplitude because the latitudinal range of the wave-particle interaction is important for the growth of wave amplitude

    Tissue-Specific Function of Period3 in Circadian Rhythmicity

    Get PDF
    The mammalian circadian system is composed of multiple central and peripheral clocks that are temporally coordinated to synchronize physiology and behavior with environmental cycles. Mammals have three homologs of the circadian Period gene (Per1, 2, 3). While numerous studies have demonstrated that Per1 and Per2 are necessary for molecular timekeeping and light responsiveness in the master circadian clock in the suprachiasmatic nuclei (SCN), the function of Per3 has been elusive. In the current study, we investigated the role of Per3 in circadian timekeeping in central and peripheral oscillators by analyzing PER2::LUCIFERASE expression in tissues explanted from C57BL/6J wild-type and Per3−/− mice. We observed shortening of the periods in some tissues from Per3−/− mice compared to wild-types. Importantly, the periods were not altered in other tissues, including the SCN, in Per3−/− mice. We also found that Per3-dependent shortening of endogenous periods resulted in advanced phases of those tissues, demonstrating that the in vitro phenotype is also present in vivo. Our data demonstrate that Per3 is important for endogenous timekeeping in specific tissues and those tissue-specific changes in endogenous periods result in internal misalignment of circadian clocks in Per3−/− mice. Taken together, our studies demonstrate that Per3 is a key player in the mammalian circadian system

    Temporal and Spatial Evolutions of a Large Sunspot Group and Great Auroral Storms Around the Carrington Event in 1859

    Get PDF
    The Carrington event is considered to be one of the most extreme space weather events in observational history within a series of magnetic storms caused by extreme interplanetary coronal mass ejections from a large and complex active region that emerged on the solar disk. In this article, we study the temporal and spatial evolutions of the source sunspot active region and visual aurorae and compare this storm with other extreme space weather events on the basis of their auroral spatial evolution. Sunspot drawings by Schwabe, Secchi, and Carrington describe the position and morphology of the source active region at that time. Visual auroral reports from the Russian Empire, Iberia, Ireland, Oceania, and Japan fill the spatial gap of auroral visibility and revise the time series of auroral visibility in middle to low magnetic latitudes. The reconstructed time series is compared with magnetic measurements and shows the correspondence between low-latitude to mid-latitude aurorae and the phase of magnetic storms. The spatial evolution of the auroral oval is compared with those of other extreme space weather events in 1872, 1909, 1921, and 1989 as well as their storm intensity and contextualizes the Carrington event, as one of the most extreme space weather events, but likely not unique

    An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA

    Get PDF
    The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock

    Dietary patterns associated with fall-related fracture in elderly Japanese: a population based prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diet is considered an important factor for bone health, but is composed of a wide variety of foods containing complex combinations of nutrients. Therefore we investigated the relationship between dietary patterns and fall-related fractures in the elderly.</p> <p>Methods</p> <p>We designed a population-based prospective survey of 1178 elderly people in Japan in 2002. Dietary intake was assessed with a 75-item food frequency questionnaire (FFQ), from which dietary patterns were created by factor analysis from 27 food groups. The frequency of fall-related fracture was investigated based on insurance claim records from 2002 until 2006. The relationship between the incidence of fall-related fracture and modifiable factors, including dietary patterns, were examined. The Cox proportional hazards regression model was used to examine the relationships between dietary patterns and incidence of fall-related fracture with adjustment for age, gender, Body Mass Index (BMI) and energy intake.</p> <p>Results</p> <p>Among 877 participants who agreed to a 4 year follow-up, 28 suffered from a fall-related fracture. Three dietary patterns were identified: mainly vegetable, mainly meat and mainly traditional Japanese. The moderately confirmed (see statistical methods) groups with a Meat pattern showed a reduced risk of fall-related fracture (Hazard ratio = 0.36, 95% CI = 0.13 - 0.94) after adjustment for age, gender, BMI and energy intake. The Vegetable pattern showed a significant risk increase (Hazard ratio = 2.67, 95% CI = 1.03 - 6.90) after adjustment for age, gender and BMI. The Traditional Japanese pattern had no relationship to the risk of fall-related fracture.</p> <p>Conclusions</p> <p>The results of this study have the potential to reduce fall-related fracture risk in elderly Japanese. The results should be interpreted in light of the overall low meat intake of the Japanese population.</p
    corecore