66 research outputs found

    Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    Get PDF
    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. © The Author(s) 20166511sciescopu

    Polyp Clearance via Operative and Endoscopic Polypectomy in Patients With Peutz-Jeghers Syndrome After Multiple Small Bowel Resections

    Get PDF
    Peutz-Jeghers syndrome is an autosomal dominant inherited disease that manifests as a combination of mucocutaneous pigmentation and gastrointestinal hamartomatous polyps that usually cause intussusception and intestinal hemorrhage. We report the case of a 40-year-old male patient who was diagnosed 20 years ago and had previously undergone 3 intestinal resection surgeries. This time, with the use of combined operative and endoscopic polypectomy, more than 100 polyps were removed. This technique is useful for providing a "clean" small intestine that allows the patient a long interval between laparotomies and reduces the complications associated with multiple laparotomies and resections

    γ-Aminobutyric Acid Transporter 2 Mediates the Hepatic Uptake of Guanidinoacetate, the Creatine Biosynthetic Precursor, in Rats

    Get PDF
    Guanidinoacetic acid (GAA) is the biosynthetic precursor of creatine which is involved in storage and transmission of phosphate-bound energy. Hepatocytes readily convert GAA to creatine, raising the possibility that the active uptake of GAA by hepatocytes is a regulatory factor. The purpose of this study is to investigate and identify the transporter responsible for GAA uptake by hepatocytes. The characteristics of [14C]GAA uptake by hepatocytes were elucidated using the in vivo liver uptake method, freshly isolated rat hepatocytes, an expression system of Xenopus laevis oocytes, gene knockdown, and an immunohistochemical technique. In vivo injection of [14C]GAA into the rat femoral vein and portal vein results in the rapid uptake of [14C]GAA by the liver. The uptake was markedly inhibited by γ-aminobutyric acid (GABA) and nipecotinic acid, an inhibitor of GABA transporters (GATs). The characteristics of Na+- and Cl−-dependent [14C]GAA uptake by freshly isolated rat hepatocytes were consistent with those of GAT2. The Km value of the GAA uptake (134 µM) was close to that of GAT2-mediated GAA transport (78.9 µM). GABA caused a marked inhibition with an IC50 value of 8.81 µM. The [14C]GAA uptake exhibited a significant reduction corresponding to the reduction in GAT2 protein expression. GAT2 was localized on the sinusoidal membrane of the hepatocytes predominantly in the periportal region. This distribution pattern was consistent with that of the creatine biosynthetic enzyme, S-adenosylmethionine∶guanidinoacetate N-methyltransferase. GAT2 makes a major contribution to the sinusoidal GAA uptake by periportal hepatocytes, thus regulating creatine biosynthesis in the liver

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Validation of a Korean Version of the Body-Appreciation Scale (K-BAS) in Young Women

    No full text
    Despite concerns regarding body image in young Korean women, no measurement tool has yet been developed or is available. This study examined the validity and reliability of the Korean version of the Body-Appreciation Scale (K-BAS) to assess body image positivity among young women. For this purpose, convenience sampling was conducted using social network services. The participants were 245 women (N = 245) aged 20 to 40 years. Validity and reliability were examined using item analysis, factor analysis, and correlation with body mass index, body dissatisfaction, and Cronbach’s alpha. Twelve items were selected for the study. Two factors were extracted through factor analysis, explaining 64.82% of the variance and showing a good model fit in the K-BAS. The K-BAS score was negatively correlated with body mass index (r = −0.33, p < 0.001) and body dissatisfaction (r = −0.41, p < 0.001). Reliability was high, as indicated by a Cronbach’s alpha of 0.91. These results indicate that the K-BAS may serve as an appropriate instrument for measuring body image positivity among young Korean women. It may also be useful for identifying women with abnormal body perceptions

    Thermal effects of copper-graphene composite films in a human skin analogous for the application to clothing

    Get PDF
    Purpose The purpose of the study was to explore heat-accumulative and thermal-conductive characteristics of copper-graphene composite film (Cu-G film) while applying it to a human-skin analogue. Design/methodology/approach In the preliminary experiment, the authors evaluated the thermal conductive characteristics of the Cu-G film in three covered conditions (no film, copper film, and Cu-G film conditions). For the first factorial experiment, the heat-accumulative properties over heated pig skin were compared at air temperatures of 10, 25 and 35 degrees C. For the second factorial experiment, 105 trials were conducted on pig skin by combining air temperatures, trapped air volumes, and numbers of film layers. Findings The results from the preliminary experiment showed that the Cu-G film distributed the surface heat to the outside of the Cu-G film, which resulted in even distribution of heat inside and outside the Cu-G film, whereas the copper film accumulated heat inside the copper film. The human-skin analogue of pig skin, however, showed the opposite tendency from that of the plastic. The pig-skin temperatures beneath the Cu-G film were higher than those beneath the copper film, and those differences were remarkable at the air temperature of 10 degrees C. The accumulative heat was affected by the trapped air volume, fit to the skin, and number of Cu-G film layers. Originality/value In conclusion, the Cu-G film more effectively accumulated heat on the human-skin analogue than copper film, and those effects were more marked in cold environments than in mild or hot environments.

    A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Get PDF
    Spin-torque oscillator (STO) is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT) effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR) STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ)-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model

    Biomarker Discovery of Acute Coronary Syndrome Using Proteomic Approach

    No full text
    Acute coronary syndrome (ACS) is a condition in which the coronary artery supplying blood to the heart is infarcted via formation of a plaque and thrombus, resulting in abnormal blood supply and high mortality and morbidity. Therefore, the prompt and efficient diagnosis of ACS and the need for new ACS diagnostic biomarkers are important. In this study, we aimed to identify new ACS diagnostic biomarkers with high sensitivity and specificity using a proteomic approach. A discovery set with samples from 20 patients with ACS and 20 healthy controls was analyzed using mass spectrometry. Among the proteins identified, those showing a significant difference between each group were selected. Functional analysis of these proteins was conducted to confirm their association with functions in the diseased state. To determine ACS diagnostic biomarkers, standard peptides of the selected protein candidates from the discovery set were quantified, and these protein candidates were validated in a validation set consisting of the sera of 50 patients with ACS and 50 healthy controls. We showed that hemopexin, leucine-rich α-2-glycoprotein, and vitronectin levels were upregulated, whereas fibronectin level was downregulated, in patients with ACS. Thus, the use of these biomarkers may increase the accuracy of ACS diagnosis

    Potassium Recovery from Potassium Solution and Seawater Using Different Adsorbents

    No full text
    The potassium (K) sorption characteristics with three adsorbents, natural zeolite, ammonium acetate-treated zeolite, and manganese nodule, were studied and compared to see the potential use of manganese nodule as an alternative K adsorbent. In general, the Langmuir isotherm could fit the K sorption in the KCl solutions at different pH conditions better than the Freundlich isotherm. Based on the Langmuir parameters, the maximum K sorption was greater for the zeolite-based adsorbents (i.e., 40–42 mg g−1) than the manganese nodule (i.e., 2.0 mg g−1) at acidic conditions, while the manganese nodule (i.e., 9.7 mg g−1) showed better K sorption at neutral conditions. With the seawater samples, the zeolite-based adsorbents showed higher K recovery (4–14%) than the manganese nodule (0–8.8%). The K sorption on the zeolite-based adsorbents followed the pseudo-second-order kinetics and the K sorption rates were higher for the treated zeolite than the natural zeolite. The repeated sorption tests showed that the natural zeolite could potentially be reused up to three times without any significant loss of K sorption capacity, while the ammonium acetate-treated zeolite lost its K sorption capacity after the single sorption test. Overall, the results show that the manganese nodule may potentially be the alternative to zeolite for K recovery under certain conditions, yet the zeolite-based adsorbents are generally better than the manganese nodule. Thus, more studies to enhance the K recovery using zeolite, including surface modified zeolite, are recommended
    corecore