26 research outputs found

    Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Get PDF
    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr-1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation

    Relative sea-level change in Connecticut (USA) during the last 2200 yrs

    Get PDF
    We produced a relative sea-level (RSL) reconstruction from Connecticut (USA) spanning the last ∼2200 yrs that is free from the influence of sediment compaction. The reconstruction used a suite of vertically- and laterally-ordered sediment samples ≤2 cm above bedrock that were collected by excavating a trench along an evenly-sloped bedrock surface. Paleomarsh elevation was reconstructed using a regional-scale transfer function trained on the modern distribution of foraminifera on Long Island Sound salt marshes and supported by bulk-sediment δ13C measurements. The history of sediment accumulation was estimated using an age-elevation model constrained by radiocarbon dates and recognition of pollution horizons of known age. The RSL reconstruction was combined with regional tide-gauge measurements spanning the last ∼150 yrs before being quantitatively analyzed using an error-in-variables integrated Gaussian process model to identify sea-level trends with formal and appropriate treatment of uncertainty and the temporal distribution of data. RSL rise was stable (∼1 mm/yr) from ∼200 BCE to ∼1000 CE, slowed to a minimum rate of rise (0.41 mm/yr) at ∼1400 CE, and then accelerated continuously to reach a current rate of 3.2 mm/yr, which is the fastest, century-scale rate of the last 2200 yrs. Change point analysis identified that modern rates of rise in Connecticut began at 1850–1886 CE. This timing is synchronous with changes recorded at other sites on the U.S. Atlantic coast and is likely the local expression of a global sea-level change. Earlier sea-level trends show coherence north of Cape Hatteras that are contrasted with southern sites. This pattern may represent centennial-scale variability in the position and/or strength of the Gulf Stream. Comparison of the new record to three existing and reanalyzed RSL reconstructions from the same site developed using sediment cores indicates that compaction is unlikely to significantly distort RSL reconstructions produced from shallow (∼2–3 m thick) sequences of salt-marsh peat

    Sea Level Rise and the Dynamics of the Marsh-Upland Boundary

    Get PDF
    During sea level rise, salt marshes transgress inland invading low-lying forests, agricultural fields, and suburban areas. This transgression is a complex process regulated by infrequent storms that flood upland ecosystems increasing soil salinity. As a result upland vegetation is replaced by halophyte marsh plants. Here we present a review of the main processes and feedbacks regulating the transition from upland ecosystems to salt marshes. The goal is to provide a process-based framework that enables the development of quantitative models for the dynamics of the marsh-upland boundary. Particular emphasis is given to the concept of ecological ratchet, combining the press disturbance of sea level rise with the pulse disturbance of storms

    Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Get PDF
    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr-1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation

    Op weg naar een kennisbasis van lerarenopleiders. Verantwoording van fase 2: ontwikkeling van inhouden

    No full text
    The Mara River Basin in East Africa is a trans-boundary basin of international significance experiencing excessive levels of sediment loads. Sediment levels in this river are extremely high (turbidities as high as 6,000 NTU) and appear to be increasing over time. Large wildlife populations, unregulated livestock grazing, and agricultural land conversion are all potential factors increasing sediment loads in the semi-arid portion of the basin. The basin is well-known for its annual wildebeest (Connochaetes taurinus) migration of approximately 1.3 million individuals, but it also has a growing population of hippopotami (Hippopotamus amphibius), which reside within the river and may contribute to the flux of suspended sediments. We used in situ pressure transducers and turbidity sensors to quantify the sediment flux at two sites for the Mara River and investigate the origin of riverine suspended sediment. We found that the combined Middle Mara—Talek catchment, a relatively flat but semi-arid region with large populations of wildlife and domestic cattle, is responsible for 2/3 of the sediment flux. The sediment yield from the combined Middle Mara–Talek catchment is approximately the same as the headwaters, despite receiving less rainfall. There was high monthly variability in suspended sediment fluxes. Although hippopotamus pools are not a major source of suspended sediments under baseflow, they do contribute to short-term variability in suspended sediments. This research identified sources of suspended sediments in the Mara River and important regions of the catchment to target for conservation, and suggests hippopotami may influence riverine sediment dynamics

    Quantitative vertical zonation of salt-marsh foraminifera for reconstructing former sea level; an example from New Jersey, USA.

    Get PDF
    We present a quantitative technique to reconstruct sea level from assemblages of salt-marsh foraminifera using partitioning around medoids (PAM) and linear discriminant functions (LDF). The modern distribution of foraminifera was described from 62 surface samples at three salt marshes in southern New Jersey. PAM objectively estimated the number and composition of assemblages present at each site and showed that foraminifera adhered to the concept of elevation-dependent ecological zones, making them appropriate sea-level indicators. Application of PAM to a combined dataset identified five distinctive biozones occupying defined elevation ranges, which were similar to those identified elsewhere on the U.S. mid-Atlantic coast. Biozone A had high abundances of Jadammina macrescens and Trochammina inflata; biozone B was dominated by Miliammina fusca; biozone C was associated with Arenoparrella mexicana; biozone D was dominated by Tiphotrocha comprimata and biozone E was dominated by Haplophragmoides manilaensis. Foraminiferal assemblages from transitional and high salt-marsh environments occupied the narrowest elevational range and are the most precise sea-level indicators. Recognition of biozones in sequences of salt-marsh sediment using LDFs provides a probabilistic means to reconstruct sea level. We collected a core to investigate the practical application of this approach. LDFs indicated the faunal origin of 38 core samples and in cross-validation tests were accurate in 54 of 56 cases. We compared reconstructions from LDFs and a transfer function. The transfer function provides smaller error terms and can reconstruct smaller RSL changes, but LDFs are well suited to RSL reconstructions focused on larger changes and using varied assemblages. Agreement between these techniques suggests that the approach we describe can be used as an independent means to reconstruct sea level or, importantly, to check the ecological plausibility of results from other techniques

    Sea-level change during the last 2500 years in New Jersey, USA

    Get PDF
    Relative sea-level changes during the last ∼2500 years in New Jersey, USA were reconstructed to test if late Holocene sea level was stable or included persistent and distinctive phases of variability. Foraminifera and bulk-sediment δ13C values were combined to reconstruct paleomarsh elevation with decimeter precision from sequences of salt-marsh sediment at two sites using a multi-proxy approach. The additional paleoenvironmental information provided by bulk-sediment δ13C values reduced vertical uncertainty in the sea-level reconstruction by about one third of that estimated from foraminifera alone using a transfer function. The history of sediment deposition was constrained by a composite chronology. An age–depth model developed for each core enabled reconstruction of sea level with multi-decadal resolution. Following correction for land-level change (1.4 mm/yr), four successive and sustained (multi-centennial) sea-level trends were objectively identified and quantified (95% confidence interval) using error-in-variables change point analysis to account for age and sea-level uncertainties. From at least 500 BC to 250 AD, sea-level fell at 0.11 mm/yr. The second period saw sea-level rise at 0.62 mm/yr from 250 AD to 733 AD. Between 733 AD and 1850 AD, sea level fell at 0.12 mm/yr. The reconstructed rate of sea-level rise since ∼1850 AD was 3.1 mm/yr and represents the most rapid period of change for at least 2500 years. This trend began between 1830 AD and 1873 AD. Since this change point, reconstructed sea-level rise is in agreement with regional tide-gauge records and exceeds the global average estimate for the 20th century. These positive and negative departures from background rates demonstrate that the late Holocene sea level was not stable in New Jersey
    corecore