53 research outputs found

    MITSuME--Multicolor Imaging Telescopes for Survey and Monstrous Explosions

    Get PDF
    Development of MITSuME is reported. Two 50-cm optical telescopes have been built at Akeno in Yamanashi prefecture and at Okayama Astrophysical Observatory (OAO) in Okayama prefecture. Three CCD cameras for simultaneous g'RcIc photometry are to be mounted on each focal plane, covering a wide FOV of about 30" x 30". The limiting magnitude at V is fainter than 18. In addition to these two optical telescopes, a 91-cm IR telescope with a 1 deg x 1 deg field of view is being built at OAO, which performs photometry in YJHK bands. These robotic telescopes can start the observation of counterparts of a GRB within a minute from an alert. We aim to obtain photometric redshifts exceeding 10 with these telescopes. The performance and the current construction status of the telescopes are presented.Comment: 4 pages, 3 figures, 4th Workshop on Gamma-Ray Burst in the Afterglow Era, Roma, October 18-22, 200

    Spectral Lag Relations in GRB Pulses Detected with HETE-2

    Full text link
    Using a pulse-fit method, we investigate the spectral lags between the traditional gamma-ray band (50-400 keV) and the X-ray band (6-25 keV) for 8 GRBs with known redshifts (GRB 010921, GRB 020124, GRB 020127, GRB 021211, GRB 030528, GRB 040924, GRB 041006, GRB 050408) detected with the WXM and FREGATE instruments aboard the HETE-2 satellite. We find several relations for the individual GRB pulses between the spectral lag and other observables, such as the luminosity, pulse duration, and peak energy (Epeak). The obtained results are consistent with those for BATSE, indicating that the BATSE correlations are still valid at lower energies (6-25 keV). Furthermore, we find that the photon energy dependence for the spectral lags can reconcile the simple curvature effect model. We discuss the implication of these results from various points of view.Comment: 13 pages, 9 figures, accepted for the publication in PASJ (minor corrections

    AN5D: Automated Stencil Framework for High-Degree Temporal Blocking on GPUs

    Full text link
    Stencil computation is one of the most widely-used compute patterns in high performance computing applications. Spatial and temporal blocking have been proposed to overcome the memory-bound nature of this type of computation by moving memory pressure from external memory to on-chip memory on GPUs. However, correctly implementing those optimizations while considering the complexity of the architecture and memory hierarchy of GPUs to achieve high performance is difficult. We propose AN5D, an automated stencil framework which is capable of automatically transforming and optimizing stencil patterns in a given C source code, and generating corresponding CUDA code. Parameter tuning in our framework is guided by our performance model. Our novel optimization strategy reduces shared memory and register pressure in comparison to existing implementations, allowing performance scaling up to a temporal blocking degree of 10. We achieve the highest performance reported so far for all evaluated stencil benchmarks on the state-of-the-art Tesla V100 GPU

    Prospects for GRB Science with the Fermi Large Area Telescope

    Full text link
    The LAT instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst phenomena in the > 100 MeV band. The synergy with Fermi's GBM detectors will link these observations to those in the well explored 10-1000 keV range; the addition of the > 100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LAT's burst detection methodologies and the instrument's GRB capabilities.Comment: Accepted by Ap

    Environmental factors determining the distribution of highland plants at low-altitude algific talus sites

    Get PDF
    Algific talus is a micro-scale habitat type where highland plants (subalpine and alpine species) are found, disjunct from their typical range, in lowland forests. On algific talus, cold airflows from the interstices between talus fragments create a local microclimate colder than surrounding forests. Despite of the widely-known occurrence of unique vegetation on algific talus, critical environmental factors determining the distribution of highland species in this habitat type are unclear. In order to reveal the environmental factors enabling highland species to inhabit algific talus, we investigated the vegetation and environments of 26 algific talus sites and four reference (non-algific talus) sites in Hokkaido, northern Japan. Several algific talus sites were dominated by highland species, while some algific talus sites and all non-algific talus sites were dominated by lowland species. Community analysis based on detrended correspondence analysis (DCA) and canonical corresponding analysis (CCA) revealed that the algific talus sites dominated by highland species had lower ground temperature, more acidic soil, larger canopy openness, and less diverse vegetation than the sites dominated by lowland species. Highland plants might be maintained under conditions stressful for lowland plants, resulting in less competitive situation. Generalized linear models (GLM), used to evaluate the response of individual highland species to environmental factors, revealed that preferable environmental conditions for highland plants are highly species specific. These results indicate that the maintenance of diverse environments is crucial for the conservation of the unique vegetation and local populations of highland species in algific talus areas
    corecore