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Abstract 

Algific talus is a micro-scale habitat type where highland plants (subalpine and alpine species) are 

found, disjunct from their typical range, in lowland forests. On algific talus, cold airflows from the 

interstices between talus fragments create a local microclimate colder than surrounding forests. 

Despite of the widely-known occurrence of unique vegetation on algific talus, critical environmental 

factors determining the distribution of highland species in this habitat type are unclear. In order to 

reveal the environmental factors enabling highland species to inhabit algific talus, we investigated 

the vegetation and environments of 26 algific talus sites and four reference (non-algific talus) sites in 

Hokkaido, northern Japan. Several algific talus sites were dominated by highland species, while 

some algific talus sites and all non-algific talus sites were dominated by lowland species. Community 

analysis based on detrended correspondence analysis (DCA) and canonical corresponding analysis 

(CCA) revealed that the algific talus sites dominated by highland species had lower ground 

temperature, more acidic soil, larger canopy openness, and less diverse vegetation than the sites 

dominated by lowland species. Highland plants might be maintained under conditions stressful for 

lowland plants, resulting in less competitive situation. Generalized linear models (GLM), used to 

evaluate the response of individual highland species to environmental factors, revealed that 

preferable environmental conditions for highland plants are highly species specific. These results 

indicate that the maintenance of diverse environments is crucial for the conservation of the unique 

vegetation and local populations of highland species in algific talus areas. 
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Introduction 1 

 2 

In the current interglacial period, many cold-adapted species are distributed in areas above typical 3 

latitudinal and altitudinal limits for forest vegetation (Bliss 1971; Körner and Larcher 1988; Körner 4 

2003). Mountainous areas at mid-latitudes are known to be important refugia for cold-adapted 5 

species occurring in landscapes with generally moderate climatic conditions (Gentili et al. 2015a). 6 

However, highland plants inhabiting such subalpine and alpine zones are more vulnerable to the risk 7 

of local extinctions, because their habitats are commonly small, fragmented, and isolated from each 8 

other (Lienert 2004; Gentili et al. 2015b). Marked environmental modifications have progressed in 9 

mid-latitude mountain regions. For example, recent climate change has caused the range shifts of 10 

many plants and animals toward higher altitudes, which may decrease the abundance of highland 11 

plants (Lenoir et al. 2008; Dullinger et al. 2012). Increasing browsing pressure by migrated 12 

herbivores is harmful for the maintenance of highland plant populations and species diversity in 13 

mountain ecosystems (Baur et al. 2007; Austrheim and Eriksson 2008). Furthermore, human 14 

disturbance, such as trail construction, trampling by hikers, and illegal harvesting of rare plant 15 

species accelerates the risk of local extinction (Niwa et al. 2000; Pickering and Hill 2007; Nagy and 16 

Grabherr 2009; Vásquez et al. 2015). Therefore, conservation of suitable habitats is required to 17 

reduce the risk of local extinction of highland plant species.  18 

Small and isolated populations of highland plants exist at “cool spots” below the altitudinal 19 

forest-limit at mid-latitudes, where low temperature conditions are maintained at the local scale 20 

(sensu Dobrowski 2011). Algific talus is an example of the cool spots (Gentili et al. 2015b) that 21 

commonly exist on talus slopes with stony accumulations, where cold airflow comes through the 22 

interstices between talus blocks, and low ground temperature is maintained throughout the summer 23 

(Nekola 1999; Zacharda et al. 2007). Locally unique vegetation, composed of highland plant species, 24 

often develops on this algific talus habitat (Sato 1995; Matsui and Iguchi 2001; Sato 2008; Růžička 25 

et al. 2012). 26 

A recent research study reported that low-altitude populations of Vaccinium vitis-idaea L. (a 27 

common highland species in the mid-latitudes) in algific talus sites have unique genetic structures 28 

different from the populations of outlying alpine sites (Shimokawabe et al. 2016). Therefore, algific 29 

talus may serve as micro-scale refugia, where plant communities of highland species have been 30 

maintained for relatively long periods, independently from otherwise similar communities occurring 31 

in the macro-scale refugia in high mountains (Birks 2015). The existence of lowland refugia may 32 

facilitate rapid adaptation of species responding to environmental change by which the risk of 33 
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extinction is reduced (Mosblech et al. 2011; Birks 2015). Furthermore, local adaptation may 34 

accelerate the ecological and evolutional divergence of species inhabiting micro-scale refugia (Shea 35 

and Furnier 2002; Mee and Moore 2014). Thus, plant communities at algific talus sites should be 36 

considered high priority for conservation, although their ecological significance is often overlooked 37 

because of their geographic isolation and small habitat size. 38 

Species composition of algific talus vegetation often varies among sites, and some algific talus 39 

communities completely lack highland species (Sato 1995). These variations exist even among local 40 

algific talus sites within a small area (Shimokawabe et al. 2015), and factors affecting the variation in 41 

species composition among algific talus sites are not fully understood. Although low ground 42 

temperature must be a predominant factor enabling the growth of highland plants in lowland forests 43 

(Saito 1953), the importance of other factors has been suggested (Sato et al. 1993; Matsui and Iguchi 44 

2001). Because of their inherently small size and locality, patches of algific talus vegetation may be 45 

sensitive to local environmental factors imparted by surrounding vegetation, such as light, hydrologic 46 

and edaphic conditions reported for alpine vegetation (Bliss 1963; Nagy and Grabherr 2009; 47 

Takahashi and Murayama 2014). In high mountains, harsh environment, such as cold climate, strong 48 

irradiation, desiccation and oligotrophic soil, suppress the dominance of competitive species and 49 

contribute to the maintenance of highland species diversity (Choler et al. 2001; Pauchard et al. 2009). 50 

Although several factors may affect the growth of highland plants at algific talus sites, there are few 51 

studies revealing the relationships between vegetation and environmental factors across algific talus 52 

occurrences. Understanding the factors determining the origin and maintenance of highland plant 53 

communities at algific talus sites is important for their conservation. 54 

In this study, we aimed to clarify the factors determining plant distribution on algific talus. We 55 

compared the responses of highland species, that are typically limited to subalpine or alpine habitats, 56 

to environmental conditions across 26 algific talus sites and four reference sites (non-algific talus 57 

sites) in Hokkaido, northern Japan. First, we conducted a community analysis to compare the species 58 

diversity and environmental conditions among vegetation types distinguished by the presence of 59 

highland species. To investigate the environmental factors affecting the occurrence of highland 60 

species at the algific talus sites, we focused on ground temperature, humus thickness, soil moisture, 61 

soil pH, soil C:N ratio and canopy openness. Second, we examined the probability of occurrence of 62 

individual species under specific conditions. Specifically, we attempted to answer the following 63 

questions: 64 

(1) To what extent is the presence of algific talus vegetation related to local environmental 65 

conditions? 66 
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(2) Does the trend of highland plant occurrence responding to the environmental gradients differ 67 

among species?  68 

 69 

Materials and Methods 70 

 71 

Study area 72 

 73 

This study was conducted in natural coniferous forests near the town of Engaru (43° 82’ –43° 95’ N, 74 

143° 27’ –143° 42’ E) in the northeastern part of Hokkaido, Japan. Mean monthly temperatures range 75 

from –8.3 °C to 19.9 °C with an annual mean of 5.8 °C (data obtained from the Engaru Weather 76 

Station, 80 m.a.s.l.). This area has relatively uniform geology, composed of volcanic debris 77 

(Geological Survey of Japan AIST 2015). Most algific talus sites are found in montane forests (300–78 

700 m.a.s.l.), where conditions are suitable for some alpine and subalpine species, such as Vaccinium 79 

vitis-idaea and Rhododendron palustre ssp. diversipilosum (synonym, Ledum palustre ssp. 80 

diversipilosum) (Shimokawabe et al. 2015). In the southwestern part of this area, there are high 81 

mountains (1,500–2,000 m.a.s.l.), and alpine vegetation prevails above more or less 1,500 m. 82 

In 2015, we selected 26 algific talus sites for investigation (Fig. 1). In addition, we set four study 83 

sites as references on non-algific talus. All sites exist in the forest zone (300–700 m.a.s.l.). A 5 m × 5 84 

m quadrat was established in each site, centering on the point of lowest surface temperature. The 85 

surface temperature was measured at one-hour intervals by infrared thermography (Easy Thermo 86 

TP-S, CHINO, Japan). 87 

 88 

Vegetation survey 89 

 90 

Vegetation surveys were conducted during July to August of 2015. For bryophyte, herbaceous and 91 

short tree (< 2 m) species, plant cover (%) of individual species was recorded by visual estimation in 92 

each quadrat. Furthermore, the quadrat was divided into 25 grids of 1 m × 1 m square and occurrence 93 

of highland species was counted within each grid square. Bioclimatic affinities of highland species, 94 

i.e., as subalpine or alpine, was based on Iwatsuki (1981) and Iwatsuki et al. (1993, 1995, 1999). 95 

 We classified the investigation sites into four groups based on the quantity of highland plants in 96 

each site as follows: (1) algific talus site with dominance of highland plants (> 80 % cover of 97 

highland plants), (2) algific talus site with moderate amounts of highland plants (5–80 % cover), (3) 98 

algific talus site with few highland plants (< 5 % cover), and (4) non-algific talus site (reference 99 
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sites). This criterion was determined with reference to the results of detrended corresponding 100 

analysis (see Statistical procedures and Fig. 2a) 101 

 102 

Environmental factors 103 

 104 

Ground temperature (°Celsius; °C), humus thickness (centimeter; cm), soil moisture (%), soil pH, 105 

soil carbon-to-nitrogen ratio (C:N ratio), and canopy openness (%) were measured for each site. 106 

Ground temperature at 10 cm of soil depth was recorded at the center of each quadrat at hourly 107 

intervals using an automatic data logger (CO-UA-001-08, Onset, USA). Humus thickness and soil 108 

moisture were measured randomly at five different points in each quadrat and average score was 109 

used as a representative value. Soil moisture (volumetric water content in soil) was measured by a 110 

time-domain-reflectometry device (TDR; Hydro Sense, Campbell Scientific, USA) connected to a 12 111 

cm probe; measurements were taken when there was no rainfall for at least one day before the 112 

measurement to avoid rainfall effect on soil moisture. For the analysis of soil pH and C:N ratio, five 113 

soil samples were collected randomly from each quadrat, at the depth of 5 cm from the ground 114 

surface under the litter layer; samples were combined and mixed well. Air-dried soil samples (10 g) 115 

were mixed with 250 ml deionized water, stirred, and pH of the supernatant solution of suspension 116 

was measured using an EC-pH indicator (WM-22EP, DKK-TOA, Japan). The carbon and nitrogen 117 

contents in 10 mg air-dried soil samples were analyzed by a CN analyzer (NCS2500, CE Instruments, 118 

UK), and C:N ratio was calculated. Canopy openness was calculated from hemispherical 119 

photographs, which were taken at 1.5 m above the ground at the center of each site using a fish-eye 120 

lens (180° Fisheye S-Size T-03S, TODA SEIKO, Japan). These photographs were analyzed using 121 

CanopOn2 program (Takenaka 2009). Ground temperature was measured from June to October, and 122 

all other measurements and soil sampling were conducted during July to August in 2015. 123 

 124 

Statistical procedures 125 

 126 

To evaluate the significance of environmental factors determining vegetation type, community 127 

analysis was conducted using detrended corresponding analysis (DCA: Hill and Gauch 1980) and 128 

canonical corresponding analysis (CCA: Braak 1986). We used vegetation cover of all species in 129 

each site converted by angular transformation to stabilize the variance (Sokal and Rohlf 1995). First, 130 

research sites were ordered on a two-dimensional plane by the DCA. Second, to reveal the specific 131 

environmental factors related to the algific talus vegetation, Spearman’s correlation coefficients were 132 
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calculated between the derived values of the DCA axis and values of each environmental factor, i.e., 133 

accumulated ground temperature (daily mean values from June to October), humus thickness, soil 134 

moisture content, soil pH, soil C:N ratio and canopy openness. Then, factors having a high 135 

correlation with the DCA axes (we defined that absolute value of correlation coefficient ρ is > 0.5 136 

and significance level P is < 0.001) were used in the CCA as explanatory valuables. 137 

In order to further clarify the trend of species diversity across sites, Spearman’s correlation 138 

coefficients were calculated between the derived values of the DCA axis and Shannon-Wiener’s 139 

diversity index H’ of individual sites based on the coverage of individual species. 140 

A generalized linear model (GLM) with binomial error distribution and logit-link function 141 

(Hosmer and Lemeshow 1989) was used to analyze the relationship between environmental factors 142 

and the occurrence of highland species. In this analysis, abundance of each highland species (rate of 143 

occurrence within 25 grids) was set as a response variable and the seven environmental factors 144 

mentioned above were used as explanatory variables. All the response and explanatory variables 145 

were standardized before the analysis. In this regard, highland species appearing in less than three 146 

sites were excluded from the analysis because of insufficient sample size. First, a simple correlation 147 

coefficient (ρ) between the occurrence rate of each species and each environmental factor was 148 

calculated using Spearman’s rank method. Then, full models for individual species were built using 149 

selected environmental factors, where absolute ρ values larger than 0.2 were used as explanatory 150 

factors. Finally, model selection was conducted based on Akaike’s information criteria (AIC), in 151 

which the model with the smallest AIC value was defined as the best-fit model for each species. 152 

Community analyses were conducted using vegan package (Oksanen et al. 2015) and GLM analyses 153 

were conducted using MASS and MuMIn package (Venables and Ripley 2002; Barton´ 2015) in R 154 

version 3.1.2 (R development core team 2014). 155 

 156 

Results 157 

 158 

Species assemblage and environmental factors 159 

 160 

In the vegetation survey, 170 species were recorded across the 30 sites. Among them, 13 species 161 

were recognized as highland species; they included four spermatophytes (Vaccinium vitis-idaea, 162 

Rhododendron palustre ssp. diversipilosum, Cornus canadensis, Rhododendron dauricum), one 163 

pteridophyte (Lycopodium annotinum), and eight bryophytes (Dicranum majus, Hylocomium 164 

splendens, Rhytidiadelphus triquetrus, Sphagnum girgensohnii, Pleuroziopsis ruthenica, Ptilium 165 
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crista-castrensis, Bazzania trilobata, and Oligotrichum aligerum) with reference to Iwatsuki (1981) 166 

and Iwatsuki et al. (1993, 1995, 1999). Most of the highland species were found at the algific talus 167 

sites, except for one reference site, where a small C. canadense population was found. The DCA 168 

derived four axes and first two axes explained 69 % of total vegetation variance (Table 1). Of 23 169 

algific talus sites, seven sites were classified as the group with highland plants dominance, 11 sites as 170 

the group with a moderate amount of highland plants, and eight sites as the group with few highland 171 

plants; the remainder were the non-algific talus group (four reference sites). The four identified 172 

groups based on the vegetation cover ratio were distinctively ordered in series along DCA1 (Fig. 2a).  173 

The coordinate value of DCA1 was positively correlated with accumulated ground temperature 174 

and soil pH, and negatively correlated with humus thickness and canopy openness (P < 0.05). Before 175 

the CCA, we selected factors strongly correlated with the abundance of highland plants, those being, 176 

factors having | ρ | > 0.5 with the DCA1 axis. As a result, accumulated ground temperature (ρ = 0.61, 177 

P < 0.001), soil pH (ρ = 0.67, P < 0.001), and canopy openness (ρ = –0.57, P < 0.001) were derived 178 

as explanatory variables. The CCA revealed that sites with larger coverage of highland plants tended 179 

to have lower temperature, higher acidic soil, and larger openness (Fig. 2b).  180 

The correlation coefficient ρ of coordinate value of DCA1 and biodiversity index H’ was 0.74 (P 181 

< 0.001), indicating a negative correlation between the abundance of highland species and species 182 

diversity. 183 

 184 

Occurrence of highland species 185 

 186 

Table 2 summarizes the standardized partial regression coefficients of the environmental factors that 187 

explain the abundance of highland species using best-fit models. Among the 13 highland species, 188 

Sphagnum girgensohnii, Pleuroziopsis ruthenica, Ptilium crista-castrensis, Bazzania trilobata, and 189 

Oligotrichum aligerum were excluded from the analyses because they appeared at less than three 190 

sites. The environmental conditions affecting the occurrence at the algific talus sites were different 191 

among highland species (Fig. 3 and Table 2). Most highland species preferred acidic soil, except for 192 

H. splendens and R. triquetrus. Interestingly, a significantly positive effect of low ground 193 

temperature was detected for only four species: V. vitis-idaea, C. canadense, R. dauricum and H. 194 

splendens. Ericaceous species, V. vitis-idaea, R. palustre ssp. diversipilosum and R. dauricum, 195 

preferred sites with lower canopy closure. A significant effect of humus thickness was detected for 196 

four species: H. splendens, D. majus, R. triquetrus, and L. annotinum. Hylocomium splendens 197 

preferred thicker humus, indicated by larger standardized partial regression coefficients than those 198 
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for the latter three species. Soil C:N ratio had positive effects on R. palustre ssp. diversipilosum, R. 199 

dauricum, and H. splendens, but a negative effect on D. majus, although the regression coefficients 200 

were relatively small in the models. 201 

 202 

Discussion 203 

 204 

Determinant factors of vegetation pattern 205 

 206 

Our analyses revealed that cool soil conditions, acidic soil, and canopy openness are important 207 

factors determining vegetation type at low-altitude algific talus sites. Under low soil temperature, 208 

development and branching of root systems are often inhibited (Kaspar and Bland 1992). Acidic soil 209 

is generally oligotrophic and restricts the growth of many plant species (Pauchard et al. 2009). In 210 

contrast, ericaceous plants, including many highland species, are known to grow well under acidic 211 

soil conditions because of the mycorrhizal fungi that decompose organic nitrogen compounds and 212 

supply nutrients to symbiotic plants as amino acids (Marrs and Bannister 1978; Jansa and Vosátka 213 

2000). Therefore, algific talus with cool and acidic soil conditions may restrict the prevalence of 214 

lowland plants, resulting in less competition within these communities. The positive correlation 215 

between the coordinate value of the DCA1 axis and the species diversity index supports this 216 

prediction, indicating that only stress tolerant species can grow under cool and oligotrophic soil 217 

conditions (Grime 1977). Thus, restrictions on lowland plants’ invasion contributes to the occurrence 218 

of highland plants at low-altitude algific talus sites. Because highland species occurring above the 219 

treeline commonly grow under unshaded conditions, algific talus sites under canopy gaps are more 220 

suitable for the growth of highland plants in lowland forests.  221 

Although geological conditions are not particularly variable within the study area (Geological 222 

Survey of Japan AIST 2015), soil pH varied from 4.0 to 6.5. Soil pH of the algific talus sites with 223 

many highland plants were commonly around 4.5, similar to the pH values of alpine regions, where 224 

cold climate restricts the decomposition of plant residues by microbes (Bliss 1963; Umemura 1968; 225 

Egli et al. 2001). Cold micro-climate on algific talus may restrict microbial activity at low-altitudes, 226 

resulting in similar edaphic conditions as those of alpine environments. Indeed, we detected a weak 227 

positive correlation (ρ = 0.49, P < 0.01) between accumulated ground temperature and soil pH, 228 

suggesting slow decomposition rates under cold micro-climate. In another case, variation in species 229 

composition might affect soil chemistry. As leaves of deciduous species are usually decomposed 230 

faster than those of evergreen species (Hobbie and Gough 2004), the forest types around algific talus 231 
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sites may influence their soil conditions; i.e., soil of coniferous forests is commonly more acidic than 232 

that of broad-leafed forests (Street and Kingdom 1997). Furthermore, because many highland species 233 

are evergreen species, lower decomposition rates and more acidic situation are expected. This is 234 

interpreted as meaning that positive feedback is possible if soil acidification accelerates the exclusion 235 

of lowland plants at the algific talus sites. 236 

Previous studies stressed the importance of cold micro-climate on algific talus as the primary 237 

factor determining development of this unique vegetation type (Sato et al. 1993; Gude et al. 2003; 238 

Růžička et al. 2012). The present study demonstrates that not only low temperature but also acidic 239 

soil and open canopy structures contribute to the function of algific talus as a local habitat of 240 

highland species. 241 

 242 

Responses of highland species to the specific factors 243 

 244 

Interestingly, selected factors in the best-fit models varied among species. Although acidic soil is 245 

important for the growth of most highland species, positive responses to low ground temperature 246 

were detected only for V. vitis-idaea, C. canadense, R. dauricum and H. splendens. As mentioned 247 

above, low temperature might increase the abundance of highland species indirectly through soil 248 

acidification by inhibiting the decomposition of organic matter. Thus, highland species for which the 249 

effects of ground temperature were excluded from the best-fit models might be influenced by the 250 

indirect effect of low temperature as a condition for rooting. 251 

Although canopy openness was detected as an important factor in the community analysis, the 252 

significance of canopy openness was shown only for V. vitis-idaea, R. palustre ssp. diversipilosum 253 

and R. dauricum in the best-fit model. These species commonly grow in open stony habitats of alpine 254 

and subalpine regions (Iwatsuki et al. 1993; Tamai et al. 2009). Because the majority of alpine plants 255 

are adapted to high irradiance (Körner 2003), shading stress should decrease the growth and survival 256 

of alpine plants although shading effects may not be serious for subalpine plants inhabiting the 257 

understory. Therefore, the moderate extent of canopy closure by trees around the algific talus is 258 

important for the conservation of species diversity of highland plants. 259 

Humus thickness had positive effects on the occurrence of D. majus, H. splendens and R. 260 

triquetrus. These bryophyte species are common on humus or rotten woody materials found in 261 

mountainous areas (Iwatsuki 1981), and some have adaptations for growing on these substrates. 262 

Hylocomium Splendens, for example, has a sympodial branching in which new modules grow up 263 

from modules of the previous year (Økland et al. 1999). This feature may allow H. splendens to grow 264 
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above the thick litter layer. Humus thickness had a marginal negative effect on the occurrence of L. 265 

annotinum. However, the very low value of the regression coefficient in this species indicates that the 266 

effect of humus thickness is considered to be less important. 267 

The C:N ratio of soil showed significant effects on the distribution of several highland species at 268 

the algific talus sites. Positive effects were detected in R. palustre ssp. diversipilosum, R. dauricum, 269 

and H. splendens. Under high C:N ratio conditions (> 20), the decomposition rate of organic matter 270 

is generally low and soil becomes oligotrophic (Craft et al. 2016). Thus, high C:N ratio may inhibit 271 

the growth of lowland species, resulting in a positive effect on highland species. Among highland 272 

species, only D. majus showed a negative response to C:N ratio. Because most C:N ratio values in 273 

this study were larger than 20, however, the negative effect of C:N ratio on this species does not 274 

seem to matter much.  275 

 276 

Conclusion 277 

 278 

The present study revealed that the existence of highland species on low-altitude algific talus was 279 

strongly related to not only low temperature conditions but also acidic soil, canopy openness and 280 

humus thickness. In alpine areas, environmental heterogeneity is important for maintaining species 281 

diversity in constituent plant communities (Bliss 1962; Nagy and Grabherr 2009; Takahashi and 282 

Murayama 2014). In algific talus areas, the heterogeneity of micro-scale environments is similarly 283 

important for the persistence of various highland species at low-altitudes. To conserve the diversity 284 

of algific talus vegetation, therefore, maintenance of whole ecosystems including forests surrounding 285 

individual algific talus sites should be taken into account. 286 

To clarify the functional role and conservation value of algific talus refugia for cold-adapted 287 

plants, studies on the population dynamics of highland species are crucial. Furthermore, records of 288 

highland species growing on algific talus are important for the consideration of future vegetation 289 

dynamics under global warming. As mentioned before, Shimokawabe et al. (2016) speculate that V. 290 

vitis-idaea populations at the algific talus sites might be maintained for a long period independent of 291 

migration from alpine populations. To test this hypothesis, comparative studies on ecological traits, 292 

population dynamics and genetic traits between isolated low-altitude populations and native 293 

high-altitude populations are needed.  294 
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Fig. 1 

 

(a) Study area: forest vegetation near the town of Engaru, Hokkaido, Japan. A 5 m × 5 m quadrat was 

established in each of 26 algific talus sites and four reference sites, within the enclosed area. (b) 

Enlarged map of the enclosed area in (a). The 30 sites were divided into four vegetation types based 

on the ratio (%) of highland plant species. Each site is shown as the classified vegetation type: 

“algific talus site dominated by highland plants” (circles), “algific talus site with moderate amounts 

of highland plants” (triangles), “algific talus site with few highland plants” (squares), “non- algific 

talus site” (crosses) 
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Fig. 2 

 

Ordination of 30 sites by (a) detrended corresponding analysis and (b) canonical corresponding 

analysis. Symbols correspond with classified vegetation types: “algific talus site dominated by 

highland plants” (circles), “algific talus site with moderate amounts of highland plants” (triangles), 

“algific talus site with few highland plants” (squares), “non- algific talus site” (crosses) 
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Fig. 3 

 

Probability of occurrence of each highland species, i.e., Vaccinium vitis-idaea (VV), Rhododendron 

palustre ssp. diversipilosum (RP), Rhododendron dauricum (RD), Cornus canadense (CC), 

Lycopodium annotinum (LA), Dicranum majus (DM), Hylocomium splendens (HS), and 

Rhytidiadelphus triquetrus (RT), that could be regressed by GLM logistic regression in relation to 

each environmental factor, i.e., (a) soil pH, (b) accumulated ground temperature, (c) canopy 

openness, and (d) humus thickness 
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Table 1 

 

The eigenvalues of each DCA axis and Spearman’s rank-order correlation coefficients between 

coordinate values of each DCA axis and the characteristics of study sites (species diversity index and 

six environmental factors). 

 

DCA axes 1 2 3 4 

Eigen values 0.65 0.45 0.27 0.22  

Accumulated ground temperature 0.61 *** 0.00  0.18 0.11  

Humus thickness –0.38 * –0.10 0.13 –0.11 

Soil moisture 0.1 –0.47 ** –0.24 0.00  

Soil pH  0.67 *** 0.58 *** 0.33 0.10  

Soil C:N ratio –0.49 ** 0.01 –0.05 0.24  

Canopy openness –0.57 *** 0.43 * 0.06 0.32  

Species diversity H' 0.74 *** –0.09 0.15 –0.07 

* P < 0.005, ** P < 0.01, *** P < 0.001    
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Table 2 

 

Summary of the best-fit models of occurrence of highland plants. Each value represents the standard partial regression coefficient of each 

environmental factor for eight highland species: Vaccinium vitis-idaea (VV), Rhododendron palustre ssp. diversipilosum (RP), Rhododendron 

dauricum (RD), Cornus canadense (CC), Lycopodium annotinum (LA), Dicranum majus (DM), Hylocomium splendens (HS), and 

Rhytidiadelphus triquetrus (RT) 

 

  VV RP RD CC LA DM HS RT 

(Intercept) –4.31 *** –5.44 *** –2.79 *** –1.48 *** –2.33 *** –5.93 *** –3.56 *** –2.04 *** 

Accumulated ground temperature –2.79 *** –0.40 –1.00 *** –0.49 *** — — –2.73 *** — 

Humus thickness — –0.31 — — –0.32 ** 0.70 *** 2.10 *** 0.26 * 

Soil pH –1.40 *** –2.41 *** –0.95 *** –0.54 *** –1.59 *** –4.38 *** — — 

Soil C:N ratio — 0.66 ** 0.37 * — — –1.71 *** 0.67 *** — 

Canopy openness 1.74 *** 2.46 *** 0.94 *** 0.18 — — — — 

* P < 0.005, ** P < 0.01, *** P < 0.001       

 


