6,798 research outputs found

    A molecular dynamics computer simulation study of room-temperature ionic liquids. I. Equilibrium solvation structure and free energetics

    Full text link
    Solvation in 1-ethyl-3-methylmidazolium chloride and in 1-ethyl-3-methylimidazolium hexafluorophosphate near equilibrium is investigated via molecular dynamics computer simulations with diatomic and benzenelike molecules employed as probe solutes. It is found that electrostriction plays an important role in both solvation structure and free energetics. The angular and radial distributions of cations and anions become more structured and their densities near the solute become enhanced as the solute charge separation grows. Due to the enhancement in structural rigidity induced by electrostriction, the force constant associated with solvent configuration fluctuations relevant to charge shift and transfer processes is also found to increase. The effective polarity and reorganization free energies of these ionic liquids are analyzed and compared with those of highly polar acetonitrile. Their screening behavior of electric charges is also investigated.Comment: 12 page

    Kinematic variations due to changes in pace during men's and women's 5 km road running

    Get PDF
    The purpose of this study was to investigate variations in kinematic parameters in men's and women's 5 km road racing. Athletes often vary their pace and changes particularly tend to occur towards the end of a race due to fatigue and sprint finishes. Twenty competitive distance runners (10 male, 10 female) were videoed as they completed the English National 5 km championships. Three-dimensional kinematic data were analysed using motion analysis software (SIMI, Munich). Data were recorded at 950 m, 2,400 m and 3,850 m. Repeated measures ANOVA showed significant decreases in speed due to reduced step length and cadence in both men and women. These decreases predominantly occurred between the first two measurement points. The hip, knee, ankle and shoulder angles at both initial contact and toe-off did not change significantly, but there were significant reductions in the elbow angle for both men (at initial contact) and women (at toe-off)

    Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid

    Full text link
    Dynamics of a coarse-grained model for the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium hexafluorophosphate, couched in the united-atom site representation are studied via molecular dynamics simulations. The dynamically heterogeneous behavior of the model resembles that of fragile supercooled liquids. At or close to room temperature, the model ionic liquid exhibits slow dynamics, characterized by nonexponential structural relaxation and subdiffusive behavior. The structural relaxation time, closely related to the viscosity, shows a super-Arrhenius behavior. Local excitations, defined as displacement of an ion exceeding a threshold distance, are found to be mainly responsible for structural relaxation in the alternating structure of cations and anions. As the temperature is lowered, excitations become progressively more correlated. This results in the decoupling of exchange and persistence times, reflecting a violation of the Stokes-Einstein relation.Comment: Published on the Phys. Chem. Chem. Phys. websit

    Analytic study of the urn model for separation of sand

    Full text link
    We present an analytic study of the urn model for separation of sand recently introduced by Lipowski and Droz (Phys. Rev. E 65, 031307 (2002)). We solve analytically the master equation and the first-passage problem. The analytic results confirm the numerical results obtained by Lipowski and Droz. We find that the stationary probability distribution and the shortest one among the characteristic times are governed by the same free energy. We also analytically derive the form of the critical probability distribution on the critical line, which supports their results obtained by numerically calculating Binder cumulants (cond-mat/0201472).Comment: 6 pages including 3 figures, RevTe

    Leukotriene A4 Hydrolase – An Evolving Therapeutic Target

    Get PDF

    Theory of spin, electronic and transport properties of the lateral triple quantum dot molecule in a magnetic field

    Full text link
    We present a theory of spin, electronic and transport properties of a few-electron lateral triangular triple quantum dot molecule in a magnetic field. Our theory is based on a generalization of a Hubbard model and the Linear Combination of Harmonic Orbitals combined with Configuration Interaction method (LCHO-CI) for arbitrary magnetic fields. The few-particle spectra obtained as a function of the magnetic field exhibit Aharonov-Bohm oscillations. As a result, by changing the magnetic field it is possible to engineer the degeneracies of single-particle levels, and thus control the total spin of the many-electron system. For the triple dot with two and four electrons we find oscillations of total spin due to the singlet-triplet transitions occurring periodically in the magnetic field. In the three-electron system we find a transition from a magnetically frustrated to the spin-polarized state. We discuss the impact of these phase transitions on the addition spectrum and the spin blockade of the lateral triple quantum dot molecule.Comment: 30 pages (one column), 9 figure

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    High Speed Forming Press Using Electromagnetic Pulse Force

    Get PDF
    In this paper, the finite element analysis for the design of a high speed forming press using electromagnetic pulse force has been performed. The punch of the press has been fixed on a aluminium plate, which is driven by the electromagnetic pulse force. The force is the repulsive force between aluminium plate and the coil. The coil has been supplied with a high voltage AC current impulse from the capacitors and then the magnetized aluminium plate has been forced to move upward with high speed. For the analysis of the pressing, the coupled analysis of electromagnetic field and rigid-body dynamic of the aluminium plate has been performed with a commercial FE-software, ANSYS and the rigid-body dynamics theory
    corecore