6,798 research outputs found
A molecular dynamics computer simulation study of room-temperature ionic liquids. I. Equilibrium solvation structure and free energetics
Solvation in 1-ethyl-3-methylmidazolium chloride and in
1-ethyl-3-methylimidazolium hexafluorophosphate near equilibrium is
investigated via molecular dynamics computer simulations with diatomic and
benzenelike molecules employed as probe solutes. It is found that
electrostriction plays an important role in both solvation structure and free
energetics. The angular and radial distributions of cations and anions become
more structured and their densities near the solute become enhanced as the
solute charge separation grows. Due to the enhancement in structural rigidity
induced by electrostriction, the force constant associated with solvent
configuration fluctuations relevant to charge shift and transfer processes is
also found to increase. The effective polarity and reorganization free energies
of these ionic liquids are analyzed and compared with those of highly polar
acetonitrile. Their screening behavior of electric charges is also
investigated.Comment: 12 page
Recommended from our members
Inverse modeling of the global methyl chloride sources
Inverse modeling using the Bayesian least squares method is applied to better constrain the sources and sinks of atmospheric methyl chloride (CH3Cl) using observations from seven surface stations and eight aircraft field experiments. We use a three-dimensional global chemical transport model, the GEOS-Chem, as the forward model. Up to 39 parameters describing the continental/hemispheric and seasonal dependence of the major sources of CH3Cl are used in the inversion. We find that the available surface and aircraft observations cannot constrain all the parameters, resulting in relatively large uncertainties in the inversion results. By examining the degrees of freedom in the inversion Jacobian matrix, we choose a reduced set of parameters that can be constrained by the observations while providing valuable information on the sources and sinks. In particular, we resolve the seasonal dependence of the biogenic and biomass-burning sources for each hemisphere. The in situ aircraft measurements are found to provide better constraints on the emission sources than surface measurements. The a posteriori emissions result in better agreement with the observations, particularly at southern high latitudes. The a posteriori biogenic and biomass-burning sources decrease by 13 and 11% to 2500 and 545 Gg yr-1, respectively, while the a posteriori net ocean source increases by about a factor of 2 to 761 Gg yr-1. The decrease in biomass-burning emissions is largely due to the reduction in the emissions in seasons other than spring in the Northern Hemisphere. The inversion results indicate that the biogenic source has a clear winter minimum in both hemispheres, likely reflecting the decrease of biogenic activity during that season. Copyright 2006 by the American Geophysical Union
Kinematic variations due to changes in pace during men's and women's 5 km road running
The purpose of this study was to investigate variations in kinematic parameters in men's and women's 5 km road racing. Athletes often vary their pace and changes particularly tend to occur towards the end of a race due to fatigue and sprint finishes. Twenty competitive distance runners (10 male, 10 female) were videoed as they completed the English National 5 km championships. Three-dimensional kinematic data were analysed using motion analysis software (SIMI, Munich). Data were recorded at 950 m, 2,400 m and 3,850 m. Repeated measures ANOVA showed significant decreases in speed due to reduced step length and cadence in both men and women. These decreases predominantly occurred between the first two measurement points. The hip, knee, ankle and shoulder angles at both initial contact and toe-off did not change significantly, but there were significant reductions in the elbow angle for both men (at initial contact) and women (at toe-off)
Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid
Dynamics of a coarse-grained model for the room-temperature ionic liquid,
1-ethyl-3-methylimidazolium hexafluorophosphate, couched in the united-atom
site representation are studied via molecular dynamics simulations. The
dynamically heterogeneous behavior of the model resembles that of fragile
supercooled liquids. At or close to room temperature, the model ionic liquid
exhibits slow dynamics, characterized by nonexponential structural relaxation
and subdiffusive behavior. The structural relaxation time, closely related to
the viscosity, shows a super-Arrhenius behavior. Local excitations, defined as
displacement of an ion exceeding a threshold distance, are found to be mainly
responsible for structural relaxation in the alternating structure of cations
and anions. As the temperature is lowered, excitations become progressively
more correlated. This results in the decoupling of exchange and persistence
times, reflecting a violation of the Stokes-Einstein relation.Comment: Published on the Phys. Chem. Chem. Phys. websit
Analytic study of the urn model for separation of sand
We present an analytic study of the urn model for separation of sand recently
introduced by Lipowski and Droz (Phys. Rev. E 65, 031307 (2002)). We solve
analytically the master equation and the first-passage problem. The analytic
results confirm the numerical results obtained by Lipowski and Droz. We find
that the stationary probability distribution and the shortest one among the
characteristic times are governed by the same free energy. We also analytically
derive the form of the critical probability distribution on the critical line,
which supports their results obtained by numerically calculating Binder
cumulants (cond-mat/0201472).Comment: 6 pages including 3 figures, RevTe
Theory of spin, electronic and transport properties of the lateral triple quantum dot molecule in a magnetic field
We present a theory of spin, electronic and transport properties of a
few-electron lateral triangular triple quantum dot molecule in a magnetic
field. Our theory is based on a generalization of a Hubbard model and the
Linear Combination of Harmonic Orbitals combined with Configuration Interaction
method (LCHO-CI) for arbitrary magnetic fields. The few-particle spectra
obtained as a function of the magnetic field exhibit Aharonov-Bohm
oscillations. As a result, by changing the magnetic field it is possible to
engineer the degeneracies of single-particle levels, and thus control the total
spin of the many-electron system. For the triple dot with two and four
electrons we find oscillations of total spin due to the singlet-triplet
transitions occurring periodically in the magnetic field. In the three-electron
system we find a transition from a magnetically frustrated to the
spin-polarized state. We discuss the impact of these phase transitions on the
addition spectrum and the spin blockade of the lateral triple quantum dot
molecule.Comment: 30 pages (one column), 9 figure
Chaotic exploration and learning of locomotion behaviours
We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
High Speed Forming Press Using Electromagnetic Pulse Force
In this paper, the finite element analysis for the design of a high speed forming press
using electromagnetic pulse force has been performed. The punch of the press has been
fixed on a aluminium plate, which is driven by the electromagnetic pulse force. The force
is the repulsive force between aluminium plate and the coil. The coil has been supplied
with a high voltage AC current impulse from the capacitors and then the magnetized
aluminium plate has been forced to move upward with high speed. For the analysis of the
pressing, the coupled analysis of electromagnetic field and rigid-body dynamic of the
aluminium plate has been performed with a commercial FE-software, ANSYS and the
rigid-body dynamics theory
- …