20 research outputs found

    Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins

    Get PDF
    Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.Peer reviewe

    Antiviral properties of chemical inhibitors of cellular anti-apoptotic Bcl-2 proteins

    Get PDF
    Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.</p

    The complete mitochondrial genome of the biodiesel plant Jatropha curcas L.

    No full text
    Jatropha curcas (Linnaeus, 1753) is a plant species in the order Malpighiales and the family Euphorbiaceae and is native to the tropical regions of America, such as Mexico and Argentina. Currently, this plant species inhabits tropical and subtropical regions of the world. Jatropha has been widely used as a biofuel plant to produce high-quality diesel engine fuel. In this study, the complete mitochondrial genome sequence of J. curcas was assembled into 561,839 bp circular nucleotides with a GC content of 44.6%. The mitochondrial genome of J. curcas comprises 33 known protein-coding genes, 22 tRNA genes, three rRNA genes, one ncRNA gene, and 85 open reading frame genes. Phylogenetic analysis showed this species is closely related to the castor bean (Ricinus communis)

    The complete mitochondrial genome of the biodiesel plant <i>Jatropha curcas</i> L.

    No full text
    Jatropha curcas (Linnaeus, 1753) is a plant species in the order Malpighiales and the family Euphorbiaceae and is native to the tropical regions of America, such as Mexico and Argentina. Currently, this plant species inhabits tropical and subtropical regions of the world. Jatropha has been widely used as a biofuel plant to produce high-quality diesel engine fuel. In this study, the complete mitochondrial genome sequence of J. curcas was assembled into 561,839 bp circular nucleotides with a GC content of 44.6%. The mitochondrial genome of J. curcas comprises 33 known protein-coding genes, 22 tRNA genes, three rRNA genes, one ncRNA gene, and 85 open reading frame genes. Phylogenetic analysis showed this species is closely related to the castor bean (Ricinus communis).</p

    The power of emojis: The impact of a leader's use of positive emojis on members' creativity during computer-mediated communications.

    No full text
    The existing literature on emojis offers limited insights on the effects of using emojis in organizational settings, especially in the context of leader-member relationships. The current research examines how a leader's use of positive emojis can influence members' creative performance, a critical determinant of an organization's success and productivity. We find that a leader's use of positive emojis enhances members' creativity and that this effect is mediated by a decrease in members' perception of objectification by the leader. We further find that this impact of a leader's use of positive emojis on members' creativity is stronger when members have a higher level of relationship orientation. Contrary to the popular belief that the use of emojis in a work setting is inappropriate, our findings reveal that leaders' use of emojis has positive impacts on important workplace outcomes. These findings provide important guidelines on how to apply emojis to computer-mediated communications at work by demonstrating the circumstances in which positive consequences of using emojis occur

    Preliminary Study of Palatal Implant for Sleep Apnea Control

    No full text
    A fully-implantable device for treating obstructive sleep apnea (OSA) is conceptually suggested using soft palate stimulation. In this research, two in vivo studies were conducted to demonstrate electrical and physical feasibilities of the suggested device. First, electrical stimulation was delivered to the soft palate of a rabbit using a stimulator ASIC. The stimulation frequencies were swept from 20 Hz to 200 Hz to find out the appropriate parameter. Also, threshold level of the current pulse was evaluated to be 1.10 mA with an observance of a C-arm fluoroscopy. Second, a mock-up was fabricated with liquid crystal polymer (LCP), reflecting dimensions of the suggested device. The mock-up was inserted toward the soft palate of a rabbit by incising the hard palate in a lateral direction. After the mock-up was inserted, protrusion of the device was not detected and the subject stayed alive for at least a month at the time of this writing. Finally, several discussions on the palatal implant fabrication with LCP are presented

    Transcriptomic profiling of soybean in response to high-intensity UV-B irradiation reveals stress defense signaling

    No full text
    The depletion of the ozone layer in the stratosphere has led to a dramatic spike in ultraviolet B (UV-B) intensity and increased UV-B light levels. The direct absorption of high-intensity UV-B induces complex abiotic stresses in plants, including excessive light exposure, heat, and dehydration. However, UV-B stress signaling mechanisms in plants including soybean (Glycine max [L.]) remain poorly understood. Here, we surveyed the overall transcriptional responses of two soybean genotypes, UV-B-sensitive Cheongja 3 and UV-B-resistant Buseok, to continuous UV-B irradiation for 0 (control), 0.5, and 6 h using RNA-seq analysis. Homology analysis using UV-B-related genes from Arabidopsis thaliana revealed differentially expressed genes (DEGs) likely involved in UV-B stress responses. Functional classification of the DEGs showed that the categories of immune response, stress defense signaling, and reactive oxygen species (ROS) metabolism were over-represented. UV-B-resistant Buseok utilized phosphatidic acid-dependent signaling pathways (based on subsequent reactions of phospholipase C and diacylglycerol kinase) rather than phospholipase D in response to UV-B exposure at high fluence rates, and genes involved in its downstream pathways, such as ABA signaling, mitogen-activated protein kinase cascades, and ROS overproduction, were upregulated in this genotype. In addition, the DEGs for TIR-NBS-LRR and heat shock proteins are positively activated. These results suggest that defense mechanisms against UV-B stress at high fluence rates are separate from the photomorphogenic responses utilized by plants to adapt to low-level UV light. Our study provides valuable information for deep understanding of UV-B stress defense mechanisms and for the development of resistant soybean genotypes that survive under high-intensity UV-B stress

    Palatal implant system can provide effective treatment for obstructive sleep apnea by recovering retropalatal patency

    No full text
    Objective. Obstructive sleep apnea (OSA) is a disorder with a high prevalence rate that may induce serious complications. Recent progress in the area of hypoglossal nerve stimulation has played a role as an alternative to conventional therapies though, some patients having retropalatal collapse still have not benefitted. Therefore, here we propose a new type of upper-airway stimulation, referred to as the palatal implant system, which recovers the upper-airway patency by electrically stimulating the soft palate. Approach. The system consists of two major parts: An implant that stimulates the soft palate through electrodes and an intra-oral device that delivers power and data simultaneously to the implant via an inductive link. Evaluations of the system are conducted in bench-top, in vitro, and in vivo tests to evaluate its feasibility as an OSA treatment, and the potential development of the system is addressed in the discussion section. Main results. In the bench-top test, the power efficiency was 12.4% at d = 5 mm and the system could operate up to 8 mm distance in a bio-medium. Data transmission was also successful at distances ranging 2 to 8 mm within an error margin of 10%. The measured CSCc and the impedance magnitude of the electrode were 62.25 mC cm-2 and 390 Ω, respectively, proving a feasibility of the electrode as a stimluator interface. The system was applied to a rabbit and contraction of the soft palate muscle was recorded via a C-arm fluoroscopy. Significance. As a proof of concept, we suggest and demonstrate the palatal implant system as a new therapy for those undergoing treatment for OSA

    Unraveling the maternal and paternal origins of allotetraploid Vigna reflexo-pilosa

    No full text
    Abstract The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible
    corecore