157 research outputs found

    Everolimus and long acting octreotide as a volume reducing treatment of polycystic livers (ELATE): study protocol for a randomized controlled trial

    Get PDF
    Contains fulltext : 97893.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Polycystic liver disease (PLD) is defined as having more than 20 liver cysts and can present as a severe and disabling condition. Most symptoms are caused by the mass effect of the liver size and include abdominal pain and distension. The somatostatin analogues octreotide and lanreotide have proven to reduce polycystic liver volume. mTOR inhibitors such as everolimus inhibit cell proliferation and might thereby reduce growth of liver cysts. This trial aims to assess the benefit of combination therapy of everolimus and octreotide compared to octreotide monotherapy. In this study we present the structure of the trial and the characteristics of the included patients. METHODS/DESIGN: This is a randomized open-label clinical trial comparing the effect of 12 months of everolimus and octreotide to octreotide monotherapy in PLD patients. Primary outcome is change in liver volume determined by CT-volumetry. Secondary outcomes are changes in abdominal symptoms and quality of life. Moreover, safety and tolerability of the drugs will be assessed. DISCUSSION: This trial will compare the relative efficacy of combination therapy with octreotide and everolimus to octreotide monotherapy. Since they apply to different pathways of cystogenesis we expect that combining octreotide and everolimus will result in a cumulative reduction of polycystic liver volume. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT01157858

    Protein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1

    Get PDF
    Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme

    Partnering With Stakeholders to Inform the Co-Design of a Psychosocial Intervention for Prenatally Diagnosed Congenital Heart Disease

    Get PDF
    Input from diverse stakeholders is critical to the process of designing healthcare interventions. This study applied a novel mixed-methods, stakeholder-engaged approach to co-design a psychosocial intervention for mothers expecting a baby with congenital heart disease (CHD) and their partners to promote family wellbeing. The research team included parents and clinicians from 8 health systems. Participants were 41 diverse parents of children with prenatally diagnosed CHD across the 8 health systems. Qualitative data were collected through online crowdsourcing and quantitative data were collected through electronic surveys to inform intervention co-design. Phases of intervention co-design were: (I) Engage stakeholders in selection of intervention goals/outcomes; (II) Engage stakeholders in selection of intervention elements; (III) Obtain stakeholder input to increase intervention uptake/utility; (IV) Obtain stakeholder input on aspects of intervention design; and (V) Obtain stakeholder input on selection of outcome measures. Parent participants anticipated the resulting intervention, HEARTPrep, would be acceptable, useful, and feasible for parents expecting a baby with CHD. This model of intervention co-design could be used for the development of healthcare interventions across chronic diseases

    Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function

    Get PDF
    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression

    Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

    Get PDF
    Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations

    HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway

    Get PDF
    Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy

    Polycystic kidney diseases: From molecular discoveries to targeted therapeutic strategies

    Get PDF
    Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways

    Emerging evidence of a link between the polycystins and the mTOR pathways

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by the formation of renal cysts. This disease can be caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC-1) and -2 (PC-2), respectively
    corecore