12 research outputs found

    Influence of dietary protein on glomerular filtration before and after bariatric surgery: a cohort study

    Get PDF
    BACKGROUND: Obesity-associated elevations in glomerular filtration rate (GFR) are common and may play a role in the development of kidney disease, so identifying the underlying mechanism is important. We therefore studied whether reductions in dietary protein intake, which is known to modulate GFR, explain why GFR decreases after bariatric surgery-induced weight loss. STUDY DESIGN: Cohort study with participants as their own controls. SETTING & PARTICIPANTS: 8 severely obese patients with normal kidney function were recruited from bariatric surgery centers in Indianapolis, IN. All participants were placed on a fixed-protein (50-g/d) diet for 1 week before and after a minimum of a 20-kg weight loss by bariatric surgery and were followed up closely by dieticians for adherence. PREDICTOR: Ad lib versus low-protein diet before versus after bariatric surgery. OUTCOME: Measured GFR, using repeated-measures analysis, was used to estimate the independent effects of diet and surgery. MEASUREMENT: GFR was measured using plasma iohexol clearance. RESULTS: A median of 32.9 (range, 19.5-54.4)kg was lost between the first presurgery visit and first postsurgery visit. Dietetic evaluations and urinary urea excretion confirmed that patients generally adhered to the study diet. GFRs on an ad lib diet were significantly higher before compared to after surgery (GFR medians were 144 (range, 114-178) and 107 (range, 85-147) mL/min, respectively; P=0.01). Although bariatric surgery (-26mL/min; P=0.005) and dietary sodium intake (+7.5mL/min per 100mg of dietary sodium; P=0.001) both influenced GFR, consuming a low-protein diet did not (P=0.7). LIMITATIONS: Small sample size; mostly white women; possible lack of generalizability. CONCLUSIONS: The decrease in GFR observed after bariatric surgery is explained at least in part by the effects of surgery and/or dietary sodium intake, but not by low dietary protein consumption

    Predicting the glomerular filtration rate in bariatric surgery patients

    Get PDF
    BACKGROUND/AIMS: Identifying the best method to estimate the glomerular filtration rate (GFR) in bariatric surgery patients has important implications for the clinical care of obese patients and research into the impact of obesity and weight reduction on kidney health. We therefore performed such an analysis in patients before and after surgical weight loss. METHODS: Fasting measured GFR (mGFR) by plasma iohexol clearance before and after bariatric surgery was obtained in 36 severely obese individuals. Estimated GFR was calculated using the Modification of Diet in Renal Disease equation, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation using serum creatinine only, the CKD-EPI equation using serum cystatin C only and a recently derived equation that uses both serum creatinine and cystatin C (CKD-EPIcreat-cystC) and then compared to mGFR. RESULTS: Participants were primarily middle-aged white females with a mean baseline body mass index of 46 ± 9, serum creatinine of 0.81 ± 0.24 mg/dl and mGFR of 117 ± 40 ml/min. mGFR had a stronger linear relationship with inverse cystatin C before (r = 0.28, p = 0.09) and after (r = 0.38, p = 0.02) surgery compared to the inverse of creatinine (before: r = 0.26, p = 0.13; after: r = 0.11, p = 0.51). mGFR fell by 17 ± 35 ml/min (p = 0.007) following surgery. The CKD-EPIcreat-cystC was unquestionably the best overall performing estimating equation before and after surgery, revealing very little bias and a capacity to estimate mGFR within 30% of its true value over 80% of the time. This was true whether or not mGFR was indexed for body surface area. CONCLUSIONS: In severely obese bariatric surgery patients with normal kidney function, cystatin C is more strongly associated with mGFR than is serum creatinine. The CKD-EPIcreat-cystC equation best predicted mGFR both before and after surgery

    Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene

    Get PDF
    Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene.BackgroundWe have recently identified a mutation in the uromodulin gene in a large family affected with hyperuricemia, gout, and renal failure. The purpose of this investigation is to provide a comprehensive characterization of the clinical findings of this syndrome in family members who had a mutation in the uromodulin gene.MethodsAn extended family suffering from hyperuricemia and gout was identified by a local practitioner. After consent was obtained, patients provided a directed clinical history and blood and urine specimens for chemical and genetic testing. All family members were tested for the presence of uromodulin gene mutations by direct DNA sequence analysis. The clinical and biochemical characteristics of family members carrying the affected mutation were then investigated.ResultsThirty-nine family members were found to have an exon 5 uromodulin gene mutation (g.1966 1922 del), and 29 unaffected family members were identified. The cardinal clinical features in individuals with the uromodulin mutation included hyperuricemia, decreased fractional excretion of uric acid, and chronic interstitial renal disease leading to end-stage renal disease (ESRD) in the fifth through seventh decade. Women did not always develop hyperuricemia or gout, but still developed progressive chronic renal failure.ConclusionMutation of the uromodulin gene resulted in hyperuricemia, reduced fractional excretion of uric acid, and renal failure. Genetic testing will be required to definitively identify individuals suffering from this condition. We are interested in studying other families that may suffer from this condition and would appreciate any such referrals

    A Chronic Iron-Deficient/High-Manganese Diet in Rodents Results in Increased Brain Oxidative Stress and Behavioral Deficits in the Morris Water Maze

    No full text
    Iron deficiency (ID) is especially common in pregnant women and may even persist following childbirth. This is of concern in light of reports demonstrating that ID may be sufficient to produce homeostatic dysregulation of other metals, including manganese (Mn). These results are particularly important considering the potential introduction of the Mn-containing gas additive, methyl cyclopentadienyl manganese tricarbonyl (MMT), in various countries around the world. In order to model this potentially vulnerable population, we fed female rats fed either control (35 mg Fe/kg chow; 10 mg Mn/kg chow) or low iron/high-manganese (IDMn; 3.5 mg Fe/kg chow; 100 mg Mn/kg chow) diet, and examined whether these changes had any long-term behavioral effects on the animals\u27 spatial abilities, as tested by the Morris water maze (MWM). We also analyzed behavioral performance on auditory sensorimotor gating utilizing prepulse inhibition (PPI), which may be related to overall cognitive performance. Furthermore, brain and blood metal levels were assessed, as well as regional brain isoprostane production. We found that treated animals were slightly ID, with statistically significant increases in both iron (Fe) and Mn in the hippocampus, but statistically significantly less Fe in the cerebellum. Additionally, isoprostane levels, markers of oxidative stress, were increased in the brain stem of IDMn animals. Although treated animals were indistinguishable from controls in the PPI experiments, they performed less well than controls in the MWM. Taken together, our data suggest that vulnerable ID populations exposed to high levels of Mn may indeed be at risk of potentially dangerous alterations in brain metal levels which could also lead to behavioral deficits
    corecore