372 research outputs found

    Direct evidence for the magnetic ordering of Nd ions in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering

    Full text link
    We have investigated the low energy nuclear spin excitations in NdMn2_2Si2_2 and NdMn2_2Ge2_2 by high resolution inelastic neutron scattering. Previous neutron diffraction investigations gave ambiguous results about Nd magnetic ordering at low temperatures. The present element-specific technique gave direct evidence for the magnetic ordering of Nd ions. We found considerable difference in the process of the Nd magnetic ordering at low temperature in NdMn2_2Si2_2 and NdMn2_2Ge2_2. Our results are consistent with those of magnetization and recent neutron diffraction measurements

    A reference high-pressure CH<sub>4</sub> adsorption isotherm for zeolite Y: results of an interlaboratory study

    Get PDF
    This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess methane adsorption isotherms on NIST Reference Material RM 8850 (Zeolite Y), at 25 °C up to 7.5 MPa. Twenty laboratories participated in the study and contributed over one-hundred adsorption isotherms of methane on Zeolite Y. From these data, an empirical reference equation was determined, along with a 95% uncertainty interval (Uk=2). By requiring participants to replicate a high-pressure reference isotherm for carbon dioxide adsorption on NIST Reference Material RM 8852 (ZSM-5), this interlaboratory study also demonstrated the usefulness of reference isotherms in evaluating the performance of high-pressure adsorption experiments

    Validating Antimetastatic Effects of Natural Products in an Engineered Microfluidic Platform Mimicking Tumor Microenvironment

    Get PDF
    Development of new, antimetastatic drugs from natural products has been substantially constrained by the lack of a reliable in vitro screening system. Such a system should ideally mimic the native, three-dimensional (3D) tumor microenvironment involving different cell types and allow quantitative analysis of cell behavior critical for metastasis. These requirements are largely unmet in the current model systems, leading to poor predictability of the in vitro collected data for in vivo trials, as well as prevailing inconsistency among different in vitro tests. In the present study, we report application of a 3D, microfluidic device for validation of the antimetastatic effects of 12 natural compounds. This system supports co-culture of endothelial and cancer cells in their native 3D morphology as in the tumor microenvironment and provides real-time monitoring of the cells treated with each compound. We found that three compounds, namely sanguinarine, nitidine, and resveratrol, exhibited significant antimetastatic or antiangiogenic effects. Each compound was further examined for its respective activity with separate conventional biological assays, and the outcomes were in agreement with the findings collected from the microfluidic system. In summary, we recommend use of this biomimetic model system as a new engineering tool for high-throughput evaluation of more diverse natural compounds with varying anticancer potentials

    RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury.

    Get PDF
    Item does not contain fulltextThe receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses in renal diseases, but its role in renal ischemia/reperfusion (I/R) injury is unknown. We showed that during renal I/R, RAGE ligands HMGB1 and S100B are expressed. However, RAGE deficiency does not affect renal injury and function upon I/R-induced injury

    Environmental and genetic risk factors and gene-environment interactions in the pathogenesis of chronic obstructive lung disease.

    Get PDF
    Current understanding of the pathogenesis of chronic obstructive pulmonary disease (COPD), a source of substantial morbidity and mortality in the United States, suggests that chronic inflammation leads to the airways obstruction and parenchymal destruction that characterize this condition. Environmental factors, especially tobacco smoke exposure, are known to accelerate longitudinal decline of lung function, and there is substantial evidence that upregulation of inflammatory pathways plays a vital role in this process. Genetic regulation of both inflammatory responses and anti-inflammatory protective mechanisms likely underlies the heritability of COPD observed in family studies. In alpha-1 protease inhibitor deficiency, the only genetic disorder known to cause COPD, lack of inhibition of elastase activity, results in the parenchymal destruction of emphysema. Other genetic polymorphisms have been hypothesized to alter the risk of COPD but have not been established as causes of this condition. It is likely that multiple genetic factors interacting with each other and with a number of environmental agents will be found to result in the development of COPD

    Toll-Like Receptor Signaling and SIGIRR in Renal Fibrosis upon Unilateral Ureteral Obstruction

    Get PDF
    Innate immune activation via IL-1R or Toll-like receptors (TLR) contibutes to acute kidney injury but its role in tissue remodeling during chronic kidney disease is unclear. SIGIRR is an inhibitor of TLR-induced cytokine and chemokine expression in intrarenal immune cells, therefore, we hypothesized that Sigirr-deficiency would aggravate postobstructive renal fibrosis. The expression of TLRs as well as endogenous TLR agonists increased within six days after UUO in obstructed compared to unobstructed kidneys while SIGIRR itself was downregulated by day 10. However, lack of SIGIRR did not affect the intrarenal mRNA expression of proinflammatory and profibrotic mediators as well as the numbers of intrarenal macrophages and T cells or morphometric markers of tubular atrophy and interstitial fibrosis. Because SIGIRR is known to block TLR/IL-1R signaling at the level of the intracellular adaptor molecule MyD88 UUO experiments were also performed in mice deficient for either MyD88, TLR2 or TLR9. After UUO there was no significant change of tubular interstitial damage and interstitial fibrosis in neither of these mice compared to wildtype counterparts. Additional in-vitro studies with CD90+ renal fibroblasts revealed that TLR agonists induce the expression of IL-6 and MCP-1/CCL2 but not of TGF-β, collagen-1α or smooth muscle actin. Together, postobstructive renal interstitial fibrosis and tubular atrophy develop independent of SIGIRR, TLR2, TLR9, and MyD88. These data argue against a significant role of these molecules in renal fibrosis

    Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii

    Get PDF
    A specific signaling role for H2O2 in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H2O2 but also on light. In the dark, the induction of the reporter gene by H2O2 was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H2O2 from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H2O2 levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the catalase activity since it was prevented by 3-(3′4′-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase inhibitor, led to a higher induction of the reporter gene by H2O2 in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities. It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells from dark to light. This down-regulation apparently is necessary to maintain a certain level of H2O2 required to activate H2O2-dependent signaling pathways
    • …
    corecore