
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/109256

 

 

 

Please be advised that this information was generated on 2020-09-10 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16193704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/109256


Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Short Communication 

 J Innate Immun 2012;4:80–85 
 DOI: 10.1159/000334251 

 RAGE Does Not Contribute to
Renal Injury and Damage upon Ischemia/
Reperfusion-Induced Injury 

 Mark C. Dessing    a     Wilco P. Pulskens    a     Gwendoline J. Teske    a     Loes M. Butter    a     
Tom van der Poll    b     Huan Yang    c     Kevin J. Tracey    c     Peter P. Nawroth    d     
Angelika Bierhaus    d     Sandrine Florquin    a     Jaklien C. Leemans    a   

  a    Department of Pathology and  b    Center for Infection and Immunity Amsterdam (CINIMA) and
Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam,
 Amsterdam , The Netherlands;  c    Laboratories of Biomedical Science, Feinstein Institute for Medical Research, 
 Manhasset, N.Y. , USA;  d    Department of Internal Medicine and Clinical Chemistry, University of Heidelberg, 
 Heidelberg , Germany 

(PRR). The receptor for advanced glycation end products 
(RAGE) is a multiligand PRR that is expressed in all tis-
sues and on a wide range of cell types, including renal 
mesangial cells, (proximal) tubuli, podocytes and Bow-
man’s capsule  [2–6]  and mediates a variety of inflamma-
tory responses in renal diseases  [7] . RAGE blockade or 
deficiency has been shown to suppress hepatic, cardiac, 
lung and brain I/R-induced injury  [8–12] ; however, the 
contribution of RAGE in renal I/R-induced injury is un-
known  [13] . Therefore, in the current study we investi-
gated the contribution of RAGE in renal I/R-induced in-
jury.

  Methods 

 Mice 
 Pathogen-free 9- to 10-week-old male C57BL/6 wild-type 

(WT) mice were purchased from Charles River Laboratories. 
RAGE knockout (RAGE KO) mice on a C57Bl/6 background 
(backcrossed ten times) were generated as described elsewhere 
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 Abstract 
 The receptor for advanced glycation end products (RAGE) 
mediates a variety of inflammatory responses in renal diseas-
es, but its role in renal ischemia/reperfusion (I/R) injury is un-
known. We showed that during renal I/R, RAGE ligands HMGB1 
and S100B are expressed. However, RAGE deficiency does not 
 affect renal injury and function upon I/R-induced injury. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Renal ischemia/reperfusion (I/R) is a major clinical 
problem and is the most common cause of acute renal 
failure after renal transplantation, shock, sepsis and renal 
artery stenosis  [1] . I/R-induced injury is characterized by 
cell necrosis and release of endogenous molecules which 
are capable of activating the innate immune system 
through recognition by pattern-recognition receptors 
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 [14] . In RAGE KO mice, RAGE was deleted and replaced with a 
green fluorescent protein (GFP) construct. All mice were bred in 
the animal facility of the Academic Medical Center in Amster-
dam, The Netherlands. Age- and sex-matched WT mice were 
used in all experiments as a control. The Animal Care and Use 
Committee of the University of Amsterdam approved all experi-
ments.

  Renal I/R Injury Model 
 Renal I/R injury was induced as described previously  [15–17] . 

Briefly, both renal arteries were clamped for 30 min under gen-
eral anesthesia (0.07 ml/10 g mouse of fentanyl citrate fluanisone 
midazolam mixture containing: 1.25 mg/ml midazolam (Roche 
Diagnostics Corp.), 0.08 mg/ml fentanyl citrate, and 2.5 mg/ml 
fluanisone (Janssen Pharmaceutica)), which induces profound re-
nal damage and dysfunction without inducing mortality  [17] . All 
mice received a subcutaneous injection of 50  � g/kg buprenor-
phine (Temgesic; Schering-Plough). WT and RAGE KO mice were 
sacrificed 1, 5 or 10 days after I/R. Sham mice underwent the same 
procedure without clamping of the renal arteries and were sacri-
ficed the following day. In separate experiments, WT mice were 
injected intraperitoneally with either anti-HMGB1 (high-mobil-
ity group box 1) antibodies, produced as described before  [18, 19]  
(50  � g in 100  � l phosphate-buffered saline total volume given 1 
day before and immediately after I/R) or nonimmune mouse Ig-
G2b antibodies (50  � g in 100  � l; Sigma-Aldrich, St. Louis, Mo., 
USA).

  Plasma Biochemical Analysis, Histology and 
Immunohistochemistry 
 Renal function and tubular damage was determined as de-

scribed previously  [15, 16] . The degree of tubular damage was as-
sessed on periodic acid-Schiff diastase (PASD)-stained paraffin-
embedded tissue sections. The PASD score represents tubular 
damage, which is visually characterized by necrosis, dilation, cast 
deposition and loss of brush border  [20] . The degree of necrosis 
was scored by a pathologist in a blinded fashion on a 5-point scale: 
0 = no damage, 1 = 10% necrosis of the corticomedullary junction, 
2 = 10–25%, 3 = 25–50%, 4 = 50–75%, 5 = more than 75%. For im-
munostaining, 4- � m tissue sections were incubated with specific 
antibodies for granulocytes (FITC-labeled anti-mouse Ly6G 
mAb; BD Biosciences-Pharmingen), apoptosis (rabbit anti-hu-
man active caspase-3; Cell Signaling Technology), GFP (rabbit-
anti GFP IgG; Molecular Probes), HMGB1 (rabbit-anti mouse 
HMGB1; Abcam), S100B (rabbit anti-S100B; Sigma-Aldrich) or 
CML ( N -epsilon carboxymethyl lysine) which has been identified 
as a major structure in advanced glycation end-products (AGE), 
mouse IgG, Biologo) followed by appropriate secondary antibod-
ies as described before  [15, 16, 20–23].  To determine percentage of 
positive staining on kidney tissue slides, approximately 10 pic-
tures of tissue section were taken under light microscopy (magni-
fication  ! 40) and analyzed using a computer-assisted digital 
analysis program (ImageJ 1.45: Rasband, W.S., US National Insti-
tutes of Health, Bethesda, Md., USA).

  Preparation of Renal Tissue for Assays 
 For cytokine measurements, snap-frozen kidneys were ho-

mogenized in lysis buffer (300 m M  NaCl, 30 m M  Tris, 2 m M  
MgCl 2 , 2 m M  CaCl 2 , 1% Triton X-100, and 1% protease inhibitor 
cocktail II; Sigma-Aldrich) as described previously  [15, 16] . 

RAGE, neutrophil-related chemokines keratinocyte-derived che-
mokine (KC) and lipopolysaccharide-induced CXC chemokine 
(LIX) were measured using specific ELISAs (R&D Systems) ac-
cording to the manufacturer’s instructions. To correct whole kid-
ney homogenate for total protein content, the Bio-Rad Bradford 
Protein Assay (Bio-Rad Laboratories) was used with bovine gam-
ma-globulin as standard.

  Statistics 
 Differences between groups were analyzed using the Mann-

Whitney U test. Values are expressed as mean  8  SEM. p  !  0.05 
was considered statistically significant. Data are mean  8  SEM; 
sham group consists of 6 mice/group and I/R groups consist of 8–9 
mice/group.

  Results 

 Expression and Localization of RAGE and RAGE 
Ligands in Kidney 
 To evaluate the influence of renal I/R injury on the ex-

pression and localization of RAGE, we studied RAGE KO 
mice, in which RAGE was deleted and replaced with a 
green fluorescent protein (GFP) construct  [14] . Renal tis-
sue slides were stained for GFP as surrogate marker for 
RAGE expression. As expected, kidney tissue slides from 
sham or I/R-subjected WT mice did not stain for GFP 
(data not shown), whereas RAGE KO mice displayed 
GFP-positive cells ( fig. 1 ), i.e. cells normally expressing 
RAGE. Podocytes, distale tubuli and cells of the collect-
ing duct stained positive for GFP. In WT mice, RAGE 
protein expression in whole kidney homogenate was sig-
nificantly reduced 5 days after I/R compared to sham WT 
mice ( fig. 1 f). In line, using photo digital analysis, the per-
centage of positive RAGE/GFP staining was lower on kid-
ney tissue slides from RAGE KO mice 5 days after I/R 
compared to sham RAGE KO mice (% positive staining/
HPF: sham 6.8  8  0.3% vs. I/R day five 2.7  8  0.7%, p  !  
0.005, data are mean  8  SEM). Especially on distale tu-
buli, RAGE staining appeared to be reduced on kidney 
tissue slides from RAGE KO mice 5 days after I/R com-
pared to sham RAGE KO mice ( fig. 1 d). Next, we deter-
mined expression and localization of RAGE ligands, 
HMGB1, S100B and AGE  [7]  in renal tissue slides from 
sham WT mice and WT mice 1, 5 or 10 days after I/R 
( fig. 2 ). Increased HMGB1 staining was observed in renal 
cells, 1 day after I/R which decreased thereafter. S100B 
staining was observed 5 days after I/R. Staining for AGE 
(using CML antibody as marker) was undetectable in kid-
ney tissue slides from sham WT mice or WT mice 1, 5 or 
10 days after I/R (data not shown).



 Dessing et al.    J Innate Immun 2012;4:80–85 82

  RAGE Deficiency Does Not Lead to Impaired Renal 
Function after I/R 
 RAGE mediates a variety of inflammatory responses 

in renal diseases but its role in renal I/R injury has not 
been investigated yet  [7, 13] . We subjected WT and RAGE 
KO mice to renal I/R and sacrificed them at different 
time-points. Typically, 1 day after severe I/R, plasma cre-
atinine and urea levels increases which represents renal 
dysfunction. Thereafter, creatinine and urea levels return 
to basal level  [15, 16] . In line, tubular damage, character-
ized by necrosis, dilation, cast deposition, and loss of 
brush border increases upon I/R and reduces thereafter 
( fig. 3 ). Upon I/R, plasma creatinine and urea levels and 
tubular damage score were comparable in WT and RAGE 
KO mice at all time-points, indicating similar renal dys-
function and tubular damage between the two groups. 
Next, we measured apoptotic TECs, granulocyte influx 
and KC levels 1 day after I/R, the time-point most impor-
tant for these parameters in this model  [16] . The amount 
of apoptotic TECs in renal tissue sections, as displayed by 
caspase 3 staining, were not significantly different be-
tween WT and RAGE KO mice ( fig. 4 a). RAGE KO mice 
displayed more granulocytes in renal tissue sections, as 
displayed by Ly6 staining, and a higher level of KC in kid-
ney homogenate compared to WT mice, 1 day after I/R 
( fig. 4 b, c). Expression in whole kidney homogenate of an-
other chemokine LIX, increased similar in WT and RAGE 
KO mice upon I/R (WT vs. RAGE KO: sham 22.7  8  1.6 
vs. 22.6  8  1.6, p = 1.00 and I/R 29.4  8  3.6 vs. 30.1  8  3.0, 
p = 0.88). These data implicate that upon I/R, RAGE does 
not significantly contribute to renal dysfunction, damage 
or apoptosis but affects inflammation to some extend.
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  Fig. 1.  RAGE expression and localization in kidney tissue. Repre-
sentative picture of kidney tissue slides showing GFP staining in 
the renal cortex ( a ) and renal pelvis ( b ) of sham RAGE KO mice 
and in the renal cortex of RAGE KO mice 1 day ( c ), 5 days ( d ) and 
10 days ( e ) after I/R (magnification  ! 10, inset A+B magnification 
 ! 40). In RAGE KO mice, GFP expression marks cells that typi-
cally express RAGE. T = Distal tubuli; P = podocyte; CD = col-
lecting duct cell. RAGE protein expression in renal tissue homog-
enates ( f ) from sham WT mice (white bar) and from WT mice 1, 
5 or 10 days after I/R (black bars). Data are mean  8  SEM,  *  p  !  
0.05 vs. sham mice. 
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  Fig. 2.  RAGE ligands in WT mice subjected to I/R. Representative 
pictures of HMGB1 staining ( a–d ) and S100B staining ( f–i ) in kid-
ney tissue sections from sham WT mice and WT mice 1, 5 and 10 
days after I/R (magnification  ! 40). Digital photo analysis of 

HMGB1 ( e ) and S100B ( j ) staining on kidney tissue sections from 
sham WT mice (white bars) and WT mice 1, 5 or 10 days after I/R 
(black bars). Data are mean  8  SEM,  *  p  !  0.05 vs. sham. 
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  RAGE Ligand HMGB1 Contributes to Renal
I/R-Induced Injury 
 HMGB1 is a high-affinity binding ligand for RAGE 

with cytokine activities and is implicated as one of the key 
players in the mechanism behind I/R-induced injury. 
HMGB1 staining on kidney tissue slides from WT and 
RAGE KO mice displayed a similar pattern in sham mice 
and in mice 1 day after I/R ( fig. 2,  data not shown). Treat-
ment with HMGB1 antibodies reduced renal I/R-induced 
injury and dysfunction which was associated with re-
duced neutrophil influx and KC levels (for online suppl. 
fig. 1, see www.karger.com/doi/10.1159/000334251).

  Discussion 

 Numerous studies have described the contribution of 
RAGE in I/R-induced injury in several organs other than 
in kidney  [8–12] . RAGE is expressed in a wide range of 
renal cells and mediates a variety of inflammatory re-
sponses in renal diseases  [7] , but its role in renal I/R in-
jury was unknown  [13] . Therefore, we investigated the 
contribution of RAGE in renal I/R. We showed that 
RAGE ligands HMGB1 and S100B were expressed during 
I/R. Upon I/R, WT and RAGE KO mice were indistin-
guishable with respect to the primary renal endpoints: 
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  Fig. 3.  Renal function and tubular damage in WT mice and RAGE 
KO mice subjected to I/R. Plasma levels of creatinine ( a ) and urea 
( b ) and tubular damage (PASD;  c ) in WT (black bars) and RAGE 
KO mice (white bars) 1, 5 or 10 days after surgery. AU = arbitrary 

unit. Representative picture of PASD staining of renal tissue sec-
tions from WT mice ( d,   f ) and RAGE KO mice ( e,   g ) 1 day after 
sham ( d,   e ) or I/R ( f,   g ) procedure. N = Necrosis; CD = cast depo-
sition; BB = brush border.             
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  Fig. 4.  Renal inflammation in WT and 
RAGE KO mice subjected to I/R. Amount 
of apoptotic TECs (caspase 3;  a ) granulo-
cytes (Ly6G;  b ) and levels of KC ( c ) in WT 
(black bars) and RAGE KO mice (white 
bars) 1 day after surgery.                        *  p  !  0.01 vs. WT. 
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renal dysfunction and tubular damage. These findings 
indicate that the role of RAGE in I/R injury is tissue spe-
cific.

  RAGE is a multiligand receptor of the immunoglobu-
lin (Ig) superfamily and is expressed on a wide range of 
cell types, including renal mesangial cells, (proximal) tu-
buli, podocytes and Bowman’s capsule  [3–6, 13] . In line 
with these results, we showed RAGE expression on podo-
cyte and tubuli but also on cells of the collecting duct. 
Earlier studies have shown that RAGE expression was in-
creased in heart, brain and liver following I/R injury  [8, 
12, 24–26] . We showed that RAGE expression in the kid-
ney is unaltered early after I/R but is decreased 5 days 
after I/R. This shows that alteration in RAGE expression 
due to I/R-induced injury is different from other organs. 
RAGE deficiency did not influence renal dysfunction and 
damage upon I/R-induced injury. We did, however, ob-
serve higher KC level in the kidneys of RAGE KO mice 
compared to WT mice, 1 day after I/R. This was, how-
ever, not in line with another neutrophil-related proin-
flammatory chemokine LIX. How RAGE affects this dis-
tinctive proinflammatory response warrants further 
 investigation.

  Few studies have investigated RAGE ligand S100B in 
I/R. S100B expression was observed in ischemic heart dis-
ease  [27] . S100B expression was also observed in myocar-
dial infarction and S100B-deficient mice were beneficial 
to preservation of cardiac function herein  [28] . Pelinka et 

al.  [29]  showed that circulating S100B levels increased 
several hours after renal I/R but did not describe expres-
sion in the kidney. We are the first to show S100B expres-
sion in the kidney following I/R. Its contribution herein 
remains to be investigated. We also determined the con-
tribution of the most investigated endogenous RAGE li-
gand HMGB1 in renal I/R. In line with previous findings 
 [30, 31] , we showed that blocking HMGB1 reduces renal 
I/R-induced injury by dampening the inflammatory re-
sponse. As we do not see a similar phenotype in RAGE 
KO mice, the effect of HMGB1 in renal I/R injury cannot 
be explained by RAGE signaling. HMGB1 can, however, 
also induce activation of intracellular signaling path-
ways via interaction with PRRs other than RAGE includ-
ing: Toll-like receptor (TLR) 2, TLR-4 and inflamma-
some NACHT, LRR and PYD domains-containing pro-
tein 3 (Nlrp3)  [32, 33] . We and others have shown that 
 � HMGB1-treated WT mice, TLR2 KO, TLR4 KO and 
Nlrp3 KO mice display a similar phenotype following re-
nal I/R  [16, 17, 21, 30, 31, 34–36] . Together, these reports 
implicate that the deleterious effect of HMGB1 in the de-
velopment of renal I/R injury is not mediated by RAGE 
signaling, but rather by TLRs and/or Nlrp3. Therefore, 
targeting HMGB1 and not RAGE would provide a poten-
tial therapeutic strategy to prevent or slow down renal I/R 
injury. This study further clarified the mechanism by 
which HMGB1 induces renal I/R-induced injury. 
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