44 research outputs found

    THE DIFFERENCE OF THE BALANCE ABILITIY BETWEEN THE FUNCTIONAL ANKLE INSTABILITY AND HEALTHY SUBJECTS

    Get PDF
    Ankle inversion sprains are one of the most common injuries occurring in sports activities. Repeated ankle sprains may lead to chronic ankle instability. In order to prevent the occurrence of ankle instability, it is necessary to understand the difference in the physiological characteristics of the subjects who have chronic ankle instability and those who do not. However, there is little known about the differences between the two. It has been reported that there are two types of ankle instability: mechanical ankle instability (MAI) and functional ankle instability (FAI) which is the disability to which patients refer when they say that their foot tends to “giving way”. In this study, we have attempted to uncover the difference in the center of pressure (COP) and muscle activities during a single leg standing between FAI subjects and healthy subjects with or without an ankle brace

    A comparison of five partial volume correction methods for Tau and Amyloid PET imaging with [18F]THK5351 and [11C]PIB

    Get PDF
    PURPOSE: To suppress partial volume effect (PVE) in brain PET, there have been many algorithms proposed. However, each methodology has different property due to its assumption and algorithms. Our aim of this study was to investigate the difference among partial volume correction (PVC) method for tau and amyloid PET study. METHODS: We investigated two of the most commonly used PVC methods, Müller-Gärtner (MG) and geometric transfer matrix (GTM) and also other three methods for clinical tau and amyloid PET imaging. One healthy control (HC) and one Alzheimer's disease (AD) PET studies of both [(18)F]THK5351 and [(11)C]PIB were performed using a Eminence STARGATE scanner (Shimadzu Inc., Kyoto, Japan). All PET images were corrected for PVE by MG, GTM, Labbé (LABBE), Regional voxel-based (RBV), and Iterative Yang (IY) methods, with segmented or parcellated anatomical information processed by FreeSurfer, derived from individual MR images. PVC results of 5 algorithms were compared with the uncorrected data. RESULTS: In regions of high uptake of [(18)F]THK5351 and [(11)C]PIB, different PVCs demonstrated different SUVRs. The degree of difference between PVE uncorrected and corrected depends on not only PVC algorithm but also type of tracer and subject condition. CONCLUSION: Presented PVC methods are straight-forward to implement but the corrected images require careful interpretation as different methods result in different levels of recovery

    The genetics of neuropathic pain from model organisms to clinical application

    Get PDF
    Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic
    corecore