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Introduction 

The aggregation of amyloid β peptide is one of the pathological observations in the 

brains of individuals with Alzheimer’s disease (AD). Amyloid imaging using positron 

emission tomography (PET) has been recognized as having an important role in the 

diagnosis of AD1). In the last decade, many PET radioligands for amyloid imaging have 

been developed; some of them have successfully been applied in human PET studies. 

In general, the discovery and development of radioligands for clinical application 

requires complicated and sometimes empirical procedures in terms of chemical (e.g., 

stability of labeling and lipophilicity) or biological (e.g., affinity, metabolites and density of 

the target) factors2,3). Even though these factors have been well-investigated in the case of 

candidate radioligands, several factors obtained in in vitro or in vivo animal studies may not 

be applicable to human studies; it is not easy to develop successful radioligands and satisfy 

clinical demands4). We need to know not only the micro parameters of the candidate 

radioligands but also overall macroscopic performance. 

Recently, there has been growing interest concerning more efficient development of 

successful radioligands in clinical studies using systematic evaluation of their overall 

performance (e.g., outcome measures)3). It is obvious that the use of in vivo PET scans in 

experimental animals or humans is the fastest and easiest approach for the evaluation of the 

overall performance of the candidate radioligand. However, the development of a labelling 

protocol for positron emitter isotopes and the synthesis of a radioligand for PET studies are 
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labor intensive and also take considerable time. Therefore, in order to contribute on the 

radioligand development, we proposed a new method to predict standardized uptake value 

(SUVR) of amyloid PET radioligands using biomathematical modeling and in silico 

parameters (Fig. 1)5). The methodology includes empirical formula of lipophilosity (logP), 

free fraction of radioligand in blood (fp) and free fraction of radioligand in tissue (fND). In 

this study, we investigated the influence of empirical formulae based on 3 datasets of fp and 

fND reported by Guo et al.3), Summerfield et al.6), and Wan&Mauer7,8) on the outcome, 

predicted SUVRs, of [11C]PiB, [11C]BF-227, [11C]AZD2184, [11C]SB-13, [18F]FACT, 

[18F]florbetapir, [18F]florbetaben, [18F]flutemetamol, [18F]FDDNP and [18F]AZD4694. 
 

Material and Methods 

We assumed that the radioligand for amyloid imaging obeyed the simplified 

one-tissue compartment model (1TCM) (Fig. 1). The kinetic parameters (K1, k2 and BPND) 

for each radioligand in the human brain were mathematically modelled, where K1, k2 and 

BPND are the influx and efflux rate constants between arterial plasma and brain tissue, and 

the binding potential, respectively. The time–activity curves (TACs), with or without 

specific binding of the radioligand in brain tissue, were calculated as follows: 
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where Ctarget is the TAC of the target region, where the radioligand specifically binds to the 

target protein. Creference is the TAC of the reference region without the target protein. Cp is 

the arterial plasma input function. The influx rate constant from plasma to brain tissue, K1 

[mL/cm3/min] was formulated using the Renkin–Crone model as follows:  
( )[ ]fPSefK /

1 1 −−⋅=                            (2) 

where P, f and S are capillary permeability [cm/min], perfusion [mL/cm3/min] and 

capillary surface area [cm2/cm3 of brain], respectively. f and S were set to 0.6 

[mL/cm3/min] and 150 [cm2/cm3 of brain], respectively. Permeability P in Eq. (2) was 

empirically formulated as follows 3): 

( ) ( ){ }525.2log544.2298.2log121.0 3/12

10 −−−−= xVDcP            (3) 

where clogD and Vx are lipophilicity and the McGowan volume [cm3/mol/100], 

respectively. The efflux rate constant from brain tissue to plasma, k2 [1/min], was 

expressed using the following equation, assuming equilibrium in the radioligand 
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concentrations between plasma and brain tissue. 
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where Vaq_p and Vaq_T are the apparent aqueous volume in plasma, the apparent aqueous 

volume in tissue and these were set to 0.98 [solvent/mL of plasma] and 0.9 [solvent/mL of 

tissue], respectively3). Both fP and fND were estimated from empirical formulae, which 

were established from fP and fND measured from in vitro binding experiments using mouse 

brain and plasma, and in silico lipophilicity. Here in this study, we tested 3 data sets of fP 

and fND reported by Guo et al.3), Summerfield et al.6), and Wan&Mauer7,8). The radioligand 

binding capacity at the target site, BPND, was modelled5) as follows: 
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where a, KD-42 and KD-40 are the fractions of Aβ1-42, the dissociation constant for Aβ1-42 and 

Aβ1-40, respectively. Bavail-42, Bavail-40 and Bavail were available binding sites of Aβ1-42 and 

Aβ1-40, (Aβ1-42 + Aβ1-40), respectively. a was assumed to have a value of 0.7, which is 

biochemically derived from fractions of extra-cellular insoluble Aβ1-42 in both AD and HC 

brains 9). The TACs of the target and reference regions were calculated using K1, k2 and 

BPND and fixed arterial input function Cp using Eq. (1). The parameter of interest, SUVR, 

was then estimated from the predicted TACs. Finally, for each data sets of fp and fND, the 

predicted SUVR were compared with their clinical counterparts, SUVR5).  

 

Results and discussion 

Figure 2A shows the relationships between in silico lipophilicity and in vitro fND, 

and Fig. 2B shows the relationships between in vitro fND and fP using the datasets of Guo’s, 

Summerfield’s and Wan&Maurer’s, respectively. For each dataset, correlations between 

lipophilicity and fND and between fND and fP were observed. Figure 3 shows the relationship 

between predicted SUVR and clinically observed SUVRs, these results were obtained by 

applying empirical formulae in Fig. 2 into the prediction scheme of SUVR of the 10 

amyloid radioligands. In this study, we calculated Moriguchi logP as the lipophilicity5). 

Even though there was inconsistent use of lipophilicity between the 3 datasets (clogD and 

clogP by different softwares) and ours (MlogP) for the estimation of fp and fND, positive 
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correlations between predicted and clinically observed SUVRs were observed (Fig. 3). 

These results supported the fact that our approach (MlogP) without the use of in vitro 

experiments for fp and fND estimation can be applied to other amyloid radioligands, even 

though the data-sets selected for estimation of fp and fND resulted in different values of the 

predicted SUVRs.  

 

Conclusion 

For all 3 data sets of fp and fND, predicted SUVR showed good correlation with 

clinically observed SUVR for the 10 clinically applied amyloid tracers, however, the values 

of predicted SUVR were different from each datasets. These results will be contributed on 

the future improvement of the methodology. 
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Figure 1.  Overview of our biomathematical model: From 
physicochemical/biological properties of PET radioligand, pharmacokinetic 
parameters (K1, k2 and BPND) are estimated, then outcome measure (SUVR) 
is predicted through time activity curves of simplified 1 tissue model for both 
target and reference regions. 
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Figure 2 Relationship between in silico lippophilisity and fp (A) and between fp and 
fND (B) for 3 databases of Guo’s, Summerfield’s and Wan&Maurer’s. 

 

 

 

 
Figure 3  Relationship between clinically observed SUVR and predicted SUVR by our model based 

on 3 databases, Guo’s (A), Summerfield’s (B) and Wan&Maurer’s (C). 


