48 research outputs found

    The progress of research on Chinese stabilized fertilizer

    Get PDF

    Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus Mortierella sp. AB1 with antibacterial activity

    Get PDF
    Tellurite [Te(IV)] is a high-toxicity metalloid. In this study, a fungus with high Te(IV) resistance was isolated. Strain AB1 could efficiently reduce highly toxic Te(IV) to less toxic Te(0). The reduced products formed rod-shaped biogenetic Te(0) nanoparticles (Bio-TeNPs) intracellularly. Further TEM-element mapping, FTIR, and XPS analysis showed that the extracted Bio-TeNPs ranged from 100 to 500 nm and consisted of Te(0), proteins, lipids, aromatic compounds, and carbohydrates. Moreover, Bio-TeNPs exhibited excellent antibacterial ability against Shigella dysenteriae, Escherichia coli, Enterobacter sakazakii, and Salmonella typhimurium according to inhibition zone tests. Further growth and live/dead staining experiments showed that E. coli and S. typhimurium were significantly inhibited by Bio-TeNPs, and cells were broken or shriveled after treatment with Bio-TeNPs based on SEM observation. Additionally, the antioxidant and cytotoxicity tests showed that the Bio-TeNPs exhibited excellent antioxidant capacity with no cytotoxicity. All these results suggested that strain AB1 showed great potential in bioremediation and Bio-TeNPs were excellent antibacterial nanomaterials with no cytotoxicity.Peer reviewe

    Raw rehmannia radix polysaccharide can effectively release peroxidative injury induced by duck hepatitis A virus

    Get PDF
    Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH.Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment.Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (P<0.05) appeared between any two groups, demonstrating that it can alleviate liver pathological change. RRRP could make the hepatic injury evaluation indexes similar to BC group while the levels of the VC group were higher than other two groups in general. The levels of SOD, GSH-Px, CAT of RRRP group showed significant higher than that of VC group while the levels of NOS and MDA showed the opposite tendency, thus, RRRP could release peroxidative injury.Conclusion: RRRP was the most effective against duck hepatitis A virus (DHAV). RRRP could reduce mortality, alleviate liver pathological change, down-regulate liver lesion score, release peroxidative injury and hepatic injury. The antiviral and peroxidative injury releasing activity of RRRP for DHAV provided a platform to test novel drug strategies for hepatitis A virus in human beings.Keywords: Raw Rehmannia Radix Polysaccharide; duck hepatitis A virus; peroxidative injury; hepatic injur

    RAW REHMANNIA RADIX POLYSACCHARIDE CAN EFFECTIVELY RELEASE PEROXIDATIVE INJURY INDUCED BY DUCK HEPATITIS A VIRUS

    Get PDF
    Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH. Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment. Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (

    Mechanical, thermal and tribological properties of polyimide/nano-SiO2 composites synthesized using an in-situ polymerization

    Get PDF
    Polyimide (PI)/nano-SiO2 composites were successfully fabricated via a novel in-situ polymerization. Microstructure, thermal properties, mechanical performance and tribological behaviors of these composites were investigated. The results indicate that nano-SiO2 dispersed homogeneously. Compared with pure PI, thermal stability and heat resistance are higher about 10 °C with the addition of 5 wt% nano-SiO2. Compressive strength and modulus of composite with 5 wt% nano-SiO2 increase by 42.6 and 45.2%, respectively. The coefficient of friction (COF) of composite with 5 wt% nano-SiO2 decrease by 6.8% owing to the thick and uniform transfer films. Excess nano-SiO2 could adversely affect the COF of PI/nano-SiO2 composite. Additionally, wear resistance deteriorates obviously since transfer film exfoliates easily and nano-SiO2 aggregates on the surface of transfer films

    The Bone-Forming Effects of HIF-1α-Transduced BMSCs Promote Osseointegration with Dental Implant in Canine Mandible

    Get PDF
    The presence of insufficient bone volume remains a major clinical problem for dental implant placement to restore the oral function. Gene-transduced stem cells provide a promising approach for inducing bone regeneration and enhancing osseointegration in dental implants with tissue engineering technology. Our previous studies have demonstrated that the hypoxia-inducible factor-1α (HIF-1α) promotes osteogenesis in rat bone mesenchymal stem cells (BMSCs). In this study, the function of HIF-1α was validated for the first time in a preclinical large animal canine model in term of its ability to promote new bone formation in defects around implants as well as the osseointegration between tissue-engineered bone and dental implants. A lentiviral vector was constructed with the constitutively active form of HIF-1α (cHIF). The ectopic bone formation was evaluated in nude mice. The therapeutic potential of HIF-1α-overexpressing canine BMSCs in bone repair was evaluated in mesi-implant defects of immediate post-extraction implants in the canine mandible. HIF-1α mediated canine BMSCs significantly promoted new bone formation both subcutaneously and in mesi-implant defects, including increased bone volume, bone mineral density, trabecular thickness, and trabecular bone volume fraction. Furthermore, osseointegration was significantly enhanced by HIF-1α-overexpressing canine BMSCs. This study provides an important experimental evidence in a preclinical large animal model concerning to the potential applications of HIF-1α in promoting new bone formation as well as the osseointegration of immediate implantation for oral function restoration

    Do Fallow Season Cover Crops Increase N2O or CH4 Emission from Paddy Soils in the Mono-Rice Cropping System?

    No full text
    Cover crop management during the fallow season may play a relevant role in improving crop productivity and soil quality, by increasing nitrogen (N) and soil organic carbon (SOC) accumulation, but has the possibility of increasing greenhouse gas (GHG) emissions from the soil. A year-long consistency experiment was conducted to examine the effects of various winter covering crops on annual nitrous oxide (N2O) together with methane (CH4) emissions in the mono-rice planting system, including direct emissions in the cover crop period and the effects of incorporating these crops on gaseous emissions during the forthcoming rice (Oryza Sativa L.) growing period, to improve the development of winter fallow paddy field with covering crops and to assess rice cultivation patterns. The experiment included three treatments: Chinese milk vetch-rice (Astragalus sinicus L.) with cover crop residue returned (T1), ryegrass (Lolium multiflorum L.)-rice with cover crop residue returned (T2), and rice with winter fallow (CK). Compared with CK, the two winter cover crop treatments significantly increased rice yield, soil organic carbon (SOC) and total nitrogen (TN) by 6.9–14.5%, 0.8–2.1% and 3.4–5.4%, respectively. In all cases, the fluxes of CH4 and N2O could increase with the incorporation of N fertilizer application and cover crop residues. Short-term peaks of these two gas fluxes were monitored after all crop residues were incorporated in the soil preparation period, the early vegetative growth period and the midseason drainage period. The winter cover crop residue application greatly enhanced CH4 and N2O cumulative emissions compared with CK (by 193.6–226.5% and 37.5–43.7%, respectively) during rice growing season and intercropping period. Meanwhile, the mean values of global warming potentials (GWPs) from paddy fields with different cropping crops were T2 > T1 > CK. Considering the advantages of crop productivity together with environmental safety and soil quality, Chinese milk vetch-rice with cover crop residue returned would be the most practicable and sustainable cultivation pattern for the mono-rice cropping systems
    corecore