8,457 research outputs found

    Vortex matter and generalizations of dipolar superfluidity concept in layered systems

    Full text link
    In the first part of this letter we discuss electrodynamics of an excitonic condensate in a bilayer. We show that under certain conditions the system has a dominant energy scale and is described by the effective electrodynamics with "planar magnetic charges". In the second part of the paper we point out that a vortex liquid state in bilayer superconductors also possesses dipolar superfluid modes and establish equivalence mapping between this state and a dipolar excitonic condensate. We point out that a vortex liquid state in an N-layer superconductor possesses multiple topologically coupled dipolar superfluid modes and therefore represents a generalization of the dipolar superfluidity concept.Comment: v2: references added. v3: discussion extended, references adde

    Locking and unlocking of the counterflow transport in nu=1 quantum Hall bilayers by tilting of magnetic field

    Full text link
    The counterflow transport in quantum Hall bilayers provided by superfluid excitons is locked at small input currents due to a complete leakage caused by the interlayer tunneling. We show that the counterflow critical current I_c^{CF} above which the system unlocks for the counterflow transport can be controlled by a tilt of magnetic field in the plane perpendicular to the current direction. The effect is asymmetric with respect to the tilting angle. The unlocking is accompanied by switching of the systems from the d.c. to the a.c. Josephson state. Similar switching takes place for the tunneling set-up when the current flowing through the system exceeds the critical value I_c^T. At zero tilt the relation between the tunnel and counterflow critical currents is I_c^T=2 I_c^{CF}. We compare the influence of the in-plane magnetic field component B_\parallel on the critical currents I_c^{CF} and I_c^T. The in-plane magnetic field reduces the tunnel critical current and this reduction is symmetric with respect to the tilting angle. It is shown that the difference between I_c^{CF} and I_c^T is essential at field |B_\parallel|\lesssim \phi_0/d \lambda_J, where \phi_0 is the flux quantum, d is the interlayer distance, and \lambda_J is the Josephson length. At larger B_\parallel the critical currents I_c^{CF} and I_c^T almost coincide each other.Comment: 10 pages, 1 fi

    Charge ordering and interlayer phase coherence in quantum Hall superlattices

    Full text link
    The possibility of the existence of states with a spontaneous interlayer phase coherence in multilayer electron systems in a high perpendicular to the layers magnetic field is investigated. It is shown that phase coherence can be established in such systems only within individual pairs of adjacent layers, while such coherence does not exist between layers of different pairs. The conditions for stability of the state with interlayer phase coherence against transition to a charge-ordered state are determined. It is shown that in the system with the number of layers N\leq 10 these conditions are satisfied at any value of the interlayer distance d. For N>10 there are two intervals of stability: at sufficiently large and at sufficiently small d. For N\to \infty the stability interval in the region of small d vanishesComment: 10 page

    Phases of a bilayer Fermi gas

    Full text link
    We investigate a two-species Fermi gas in which one species is confined in two parallel layers and interacts with the other species in the three-dimensional space by a tunable short-range interaction. Based on the controlled weak coupling analysis and the exact three-body calculation, we show that the system has a rich phase diagram in the plane of the effective scattering length and the layer separation. Resulting phases include an interlayer s-wave pairing, an intralayer p-wave pairing, a dimer Bose-Einstein condensation, and a Fermi gas of stable Efimov-like trimers. Our system provides a widely applicable scheme to induce long-range interlayer correlations in ultracold atoms.Comment: 5 pages, 5 figures; (v2) stability of trimer is emphasized; (v3) published versio

    Deep-water organic-mineral sediments of the black sea as the object of mining and dewatering

    Get PDF
    The results of laboratory investigations of grain-size, physical, mechanical and rheological properties of the deep-sea organic-mineral sediments sampled from the depth of 1,920 – 2,150 m at the polygon “Sapropels” in the Black Sea are given. The results obtained are analyzed. The class of particle size distribution and soil category in difficulty of developing for this type of sediments are established.Представлено результати лабораторних досліджень гранулометричного складу, фізикомеханічних та реологічних властивостей глибоководних органо-мінеральних відкладень Чорного моря, відібраних з глибини 1920 – 2150 м на полігоні «Сапропелі». Проведено аналіз отриманих результатів. Визначено клас даного типу відкладень по гранулометричному складу і категорія ґрунту по важкості розробки.Приведены результаты лабораторных исследований гранулометрического состава, физикомеханических и реологических свойств глубоководных органо-минеральных осадков Черного моря, отобранных с глубины 1920 – 2150 м на полигоне «Сапропели». Проведен анализ полученных результатов. Определен класс данного типа отложений по гранулометрическому составу и категория грунта по трудности разработки

    Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure

    Full text link
    Phase stability of various phases of MX (M = Ti, Zr; X = C, N) at equilibrium and under pressure is examined based on first-principles calculations of the electronic and phonon structures. The results reveal that all B1 (NaCl-type) MX structures undergo a phase transition to the B2-structures under high pressure in agreement with the previous total-energy calculations. The B1-MX structures are dynamically stable under very high pressure (210-570 GPa). The pressure-induced B2 (CsCl-type) MC phases are dynamically unstable even at high pressures, and TiN and ZrN are found to crystallize with the B2-structure only at pressures above 55 GPa. The first-order B1-to-B2 phase transition in these nitrides is not related to the softening of phonon modes, and the dynamical instability of B2-MX is associated with a high density of states at the Fermi level.Comment: 9 pages, 4 figure

    Resonance at the Rabi frequency in a superconducting flux qubit

    Full text link
    We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.Comment: This paper is the extended version of the talk given by one of the authors at the Conference On Nuclei And Mesoscopic Physics, 5-9 May 2014, Michigan State University, East Lansing, US

    Stability of Sarma phases in density imbalanced electron-hole bilayer systems

    Get PDF
    We study excitonic condensation in an electron-hole bilayer system with unequal layer densities at zero temperature. Using mean-field theory we solve the BCS gap equations numerically and investigate the effects of intra-layer interactions. We analyze the stability of the Sarma phase with \bk,-\bk pairing by calculating the superfluid mass density and also by checking the compressibility matrix. We find that with bare Coulomb interactions the superfluid density is always positive in the Sarma phase, due to a peculiar momentum structure of the gap function originating from the singular behavior of the Coulomb potential at zero momentum and the presence of a sharp Fermi surface. Introducing a simple model for screening, we find that the superfluid density becomes negative in some regions of the phase diagram, corresponding to an instability towards a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) type superfluid phase. Thus, intra-layer interaction and screening together can lead to a rich phase diagram in the BCS-BEC crossover regime in electron-hole bilayer systems

    Superfluidity of electron-hole pairs in randomly inhomogeneous bilayer systems

    Full text link
    In bilayer systems electron-hole (e-h) pairs with spatially separated components (i.e., with electrons in one layer and holes in the other) can be condensed to a superfluid state when the temperature is lowered. This article deals with the influence of randomly distributed inhomogeneities on the superfluid properties of such bilayer systems in a strong perpendicular magnetic field. Ionized impurities and roughenings of the conducting layers are shown to decrease the superfluid current density of the e-h pairs. When the interlayer distance is smaller than or close to the magnetic length, the fluctuations of the interlayer distance considerably reduce the superfluid transition temperature.Comment: 13 pages, 3 figure
    corecore