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We study excitonic condensation in an electron-hole bilayer system with unequal layer densities at zero
temperature. Using mean-field theory we solve the Bardeen-Cooper-Schrieffer �BCS� gap equations numeri-
cally and investigate the effects of intralayer interactions. The electron-hole system evolves from BCS in the
weak coupling limit to Bose-Einstein condensation �BEC� in the strong coupling limit. We analyze the stability
of the Sarma phase with k ,−k pairing by calculating the superfluid mass density and also by checking the
compressibility matrix. We find that with bare Coulomb interactions the superfluid density is always positive in
the Sarma phase, due to a peculiar momentum structure of the gap function originating from the singular
behavior of the Coulomb potential at zero momentum and the presence of a sharp Fermi surface. Introducing
a simple model for screening, we find that the superfluid density becomes negative in some regions of the
phase diagram, corresponding to an instability toward a Fulde-Ferrel-Larkin-Ovchinnikov-type superfluid
phase. Thus, intralayer interaction and screening together can lead to a rich phase diagram in the BCS-BEC
crossover regime in electron-hole bilayer systems.
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I. INTRODUCTION

Recent advances in the trapping and cooling down to de-
generacy of ultracold Fermi gases have revived interest in
the ground-state phases of these systems.1–14 In a two-
component Fermi system with equal densities attractive in-
teractions between different species lead to Bardeen-Cooper-
Schrieffer �BCS� pairing in the weak coupling limit and
Bose-Einstein condensation �BEC� in the strong coupling
limit.15 When the densities are imbalanced more exotic
phases are expected to follow, such as the Sarma phase16

with zero center-of-mass momentum and Fulde-Ferrell-
Larkin-Ovchinnikov �FFLO� phase17,18 with finite center-of-
mass momentum. There is a growing literature on the pos-
sible phases of two-component Fermi gases with population
and mass imbalance.19–41 The experimental efforts in ultra-
cold Fermi gases are in their beginning stage and so far only
phase separation between a superfluid and a normal �N�
phase has been observed.7,8,42,43

Semiconducting electron-hole bilayer systems offer an-
other realization of a two-component Fermi system with
which the exotic phases can be studied. Formation of exci-
tons between spatially separated electrons and holes and
their subsequent condensation have long been predicted44,45

and arguably observed nearly 30 years later experimentally.46

The phase diagram of symmetric electron-hole bilayer sys-
tems �equal mass and layer density� is most reliably calcu-
lated by quantum Monte Carlo simulations.47,48 Recent suc-
cess in fabricating closely spaced semiconducting electron-
hole bilayer structures49,50 and the ability to control the
densities of individual layers make the investigation of
Sarma and FFLO phases very timely. In fact, experiments
supporting evidence of a transition from the Fermi-liquid
phase to an excitonic condensate have been recently reported
through Coulomb drag measurements51,52 in such structures.

The BCS-BEC crossover in an electron-hole bilayer sys-
tem with unequal electron and hole densities was recently
studied in Ref. 53 within a BCS mean-field approach. Sarma
and FFLO phases were found to be stable in some range of
densities; electron-hole bilayers appear thus promising can-
didates for the detection of such elusive phases.

In this paper we extend the work of Ref. 53 by including
the in-plane Coulomb interactions, that were neglected there,
as well as some screening effects. We find that the effect of
intralayer Fock energy quantitatively changes the phase dia-
gram moving the normal-condensed phase boundary to lower
densities. Comparing energy of the condensed phase with
that of the normal phase, we map out the phase diagram in
the average density-population polarization plane. We check
the “local” stability of the Sarma phase with respect to com-
peting FFLO order by calculating the superfluid mass density
and identify a negative superfluid mass density with an in-
stability toward an FFLO phase. We calculate also the com-
pressibility matrix in order to investigate possible instabili-
ties toward phase separation.

Finally, we consider the effect of gate layer screening,
which proves especially important in the discussion of the
local stability of the Sarma phase. At zero temperature, the
simultaneous presence of the singularity in the Coulomb po-
tential and of a sharp Fermi surface produces, in fact, a loga-
rithmic divergence in the momentum dependence of the BCS
gap function which makes the Sarma phase always locally
stable against the FFLO phase. The inclusion of some form
of screening removes this peculiar behavior, thus recovering
the instability toward the FFLO phase in some region of the
phase diagram. The intralayer interactions and screening ef-
fects give therefore rise to a rich phase diagram in the cross-
over region between the BCS-like high-density state and the
BEC of low-density excitons, showing the possibility to ob-
serve exotic superfluid phases as the population polarization
is changed.
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The rest of this paper is organized as follows. In the next
section we outline the mean-field theory for electron-hole
bilayers and provide the set of self-consistent equations for
the quasiparticle energies and gap function. In Sec. III, after
a brief remark about our computational procedure, we
present our results for the quasiparticle properties and phase
diagram of the system. We conclude in Sec. IV with a sum-
mary and outlook.

II. MEAN-FIELD THEORY

The Hamiltonian describing electrons and holes in a bi-
layer system interacting with the Coulomb potential can be
written as

Ĥ = �
k

��k
aak

†ak + �k
bbk

†bk� +
1

2A
�

k1k2q
Uq

aaak1+q
† ak2−q

† ak2
ak1

+
1

2A
�

k1k2q
Uq

bbbk1+q
† bk2−q

† bk2
bk1

+
1

A
�

k1k2q
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† bk2−q

† bk2
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. �1�

The basis states for electrons and holes are chosen to be
plane-wave states labeled by two-dimensional �2D� wave
vectors k as is conventional for a uniform system. The op-
erators ak /ak

†�bk /bk
†� are creation/annihilation operators for

electrons �holes�, respectively. The single-particle energies
are denoted by �k

a ,�k
b and the matrix element Uq with respect

to plane-wave states becomes the Fourier transform of the
corresponding two-body Coulomb interaction U�r�

Uq
aa = Uq

bb =
2�e2

�q
, Uq

ab =
2�e2

�q
e−qd, �2�

where Uaa, Ubb, and Uab denote the electron-electron, hole-
hole, and electron-hole Coulomb interactions, respectively, A
is the area of a layer, and d is the interlayer separation. We
disregard the spin degrees of freedom.

The bilayer system is characterized by the electron and
hole densities, or equivalently by the average density param-
eter rs �average distance between particles in the plane in
units of Bohr radius aB�, the population polarization � �char-
acterizing population imbalance in terms of the ratio of den-
sity difference and total density� defined by

n =
1

2
�na + nb� =

1

�aB
2rs

2 and � =
na − nb

na + nb
�3�

and the interlayer separation d.
The solution of the mean-field Hamiltonian at zero tem-

perature �T=0� is given by the following coupled integral
equations:
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where �k= ��k
a +�k

b� /2 �with �k
i =�2k2 /2mi, i=a ,b�, the mean

chemical potential �= ��a+�b� /2, while

Ek
	 = Ek 	 �Ek, �8�
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At finite temperature, the occupation functions fk
	�Ek

	� go
from the step function to the Fermi-Dirac distribution.

Given the electron and hole chemical potentials �a and
�b, these equations can be solved numerically to obtain the
unknown functions �k, �k, and �Ek. Physically, �k is the
BCS �s-wave� gap function while Ek

	 are the quasiparticle
excitation energies in the superfluid phase. In the absence of
intralayer interaction �k is just the average of the free elec-
tron and hole dispersions �with respect to the corresponding
chemical potentials�. Intralayer interaction modifies the free
dispersions by the inclusion of the exchange �Fock� interac-
tion, as explicitly considered in Eq. �5�.

For fixed number of particles the chemical potential val-
ues are adjusted to satisfy the number equations

na =
1

2A
�
k
�	1 +

�k

Ek

 fk
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−�� �11�
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1
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�
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+�� . �12�

In the above mean-field description of the electron-hole bi-
layer we have used the bare Coulomb interaction given in
Eq. �2�. In realistic systems, the interactions entering the
model hamiltonian of Eq. �1� should be modified to include
many-body effects such as exchange and correlation and ex-
ternal potentials. These effects are described by a screening
function which usually decreases the strength of the bare
Coulomb interaction for electrons and holes in the normal
phase. However, the 2D screening due to intralayer and in-
terlayer interactions is difficult to take into account properly
for the condensed phase.54 In order to see the qualitative
effects of screening we consider the mechanism of gate
screening which can be taken into account in a simple way.
In this mechanism the Coulomb potential of a point charge is
replaced by that of a dipole consisting of the point charge
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and its image behind the metallic gate. We have approxi-
mately modeled the screening by the gate potential by taking
the intralayer and interlayer interactions to be

Uq
aa = Uq

bb =
2�e2

��q2 + 
2
, Uq

ab =
2�e2

��q2 + 
2
e−qd, �13�

respectively, where the parameter 
 is a screening wave
number. In recent experiments with metallic gates to control
the charge densities, the separation between the gate and 2D
layer is about 
250 nm.50,55 Thus, the image charge is

500 nm away from the real charge and we may assume
that for distances larger than 500 nm, the Coulomb potential
will be screened. In our calculations we take the screening
length associated with gate screening to be 
20aB, i.e., 

=1 /20aB. We have also checked other values of 
 and found
that the results are largely insensitive in the range 40
�1 / �
aB��5.

III. RESULTS AND DISCUSSION

A. Numerical procedure

We solve the gap equations by representing the unknown
functions on a grid of k points �after angular integration� and
using a nonlinear root finding scheme for the function values
on grid points. For balanced populations an iterative scheme
provides a robust method of solution. For imbalanced popu-
lations we employ a root finding scheme for the function
values on grid points and chemical-potential values. We start
with the equal density solution at the same average density
and create imbalance first at a small finite temperature and
then decrease the temperature �using the solution from the
previous step as input� until results do not change with tem-
perature any more. The integrals are evaluated using Gauss-
ian quadrature. The finite temperature is necessary to obtain
smooth functions and gradients for the Newton-Raphson root
finding algorithm. We found it necessary to introduce up to
three different grids for integration to handle “discontinui-
ties” at low temperatures, when one type of occupation num-
ber becomes equal to unity fk

�=1 ��=+ or −� in a region of k
space �and causing the integrands to vanish there�.

The so-called Sarma states obtained in this way are of the
following BCS form:

��� = �
q�R

aq
† �

k�R
�uk + vkak

†b−k
† ��0� , �14�

where the resulting wave function has a certain range of k
states �the set denoted by R� occupied with quasiparticles of
the BCS theory giving rise to population imbalance. The
region R is where the quasiparticle energy Ek

	 becomes
negative, i.e., less than that of the ground pair energy and the
corresponding quasiparticle occupation becomes unity. Inci-
dentally, the quasiparticles of BCS theory are just electron or
hole states at that wave vector k. Outside the set R we have
pairs k ,−k of electrons and holes.56 Therefore, at T=0 there
can be one or two Fermi surfaces depending where the set of
k�R vectors are. These topologically different phases will
be called Sarma-1 �S1� and Sarma-2 �S2�. These states have
also been called breached pair states22 displaying a Fermi

surface together with a condensate. The gap function is non-
zero but there are gapless excitations.

B. Quasiparticle properties

In the following we present physical quantities in rydberg
units, i.e., length is measured in effective �excitonic� Bohr
radius aB= �2�

me2 , momentum in 1 /aB, and energy in effective

Rydberg �Ryd= �2

2maB
2 = e2

2�aB
�. The reduced mass m is defined

by 1 /m=1 /ma+1 /mb, where ma=me and mb=mh are the
band mass of the electron and hole, respectively. In the nu-
merical calculations we specialize to GaAs system param-
eters with mass ratio ma /mb=0.07 /0.30 and background di-
electric constant �=12.9.

Representative solutions with one and two Fermi surfaces
at T=0 are illustrated in Fig. 1 �bare Coulomb interaction�
and Fig. 2 �screened interactions� for d=aB. The figures
show the gap function �k, the quasiparticle energies Ek

	 and
their average Ek on the left panels, and the electron and hole
occupation numbers na�k� ,nb�k� on the right panels. At T
=0 in the ground state, the quasiparticle levels with negative
energy are occupied, positive-energy levels are empty. The
two different type of excitation branches are split both due to
different electron-hole mass and chemical-potential values.
When one of the spectra crosses the zero-energy axis, popu-
lation imbalance is created. If the negative-energy region in-
cludes the origin at k=0, the ground state has one Fermi
surface, otherwise it has two. The two cases are denoted by
S1 and S2, respectively. The top panel in each figure shows
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FIG. 1. �Color online� Gap function and quasiparticle energies
with bare Coulomb interactions for me /mh=0.07 /0.30 and d=aB.
The upper panel shows a Sarma-2 phase at rs=3 and �=−0.3 with
excess holes �heavy majority species�. The lower panel shows a
Sarma-1 phase at rs=5 and �=0.5 with excess electrons �light ma-
jority species�. Occupation numbers are shown on the right.
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an S2 phase and the bottom panel shows an S1 phase. Since
the quasiparticle energy branch is continuous the system still
has gapless excitations. A close investigation of the gap func-
tion �k in the absence of screening �Fig. 1� shows that it has
a cusp at the zero crossings of the quasiparticle energy, cor-
responding to a divergence in the derivative of �k. This di-
vergence has important consequences on the stability of the
Sarma phase at T=0, as discussed below.

C. Superfluid mass density, compressibility matrix,
and the stability of the Sarma phase

The “local” stability of the Sarma phase with respect to
phases of the FFLO type is usually assessed by calculating
the superfluid mass density �phase stiffness�.20,27,53 This
quantity should be positive in a stable state and a negative
value is identified with an instability toward an FFLO
phase.17,18,53 Clearly, the positivity of the superfluid mass
density guarantees only that the Sarma phase is a local mini-
mum of the energy with respect to fluctuations of the gap
parameter associated with pairing of the FFLO type, and
does not exclude the possibility that an FFLO phase with
finite pair momentum can be a global minimum of the en-
ergy. When this happens, the local stability of the Sarma
phase actually corresponds to metastability.

The superfluid mass density is given by27

�s = mene + mhnh −
�2�

8�
� dkk31

2� 1

cosh2��Ek
+/2�

+
1

cosh2��Ek
−/2�� , �15�

where � is the inverse temperature. At T=0 this expression
can be written as53

�s = mene + mhnh −
�2

4�
�
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�kj
��3

�dEk
�

dk
�

k=kj
�

, �16�

where kj
� are the roots of Ek

� with �=	. At zero temperature
the last expression involves the derivative of �k �through the
derivative of Ek

	� at the zero crossings of Ek
	. As mentioned

above, our calculations are carried out at nonzero but small
temperature. We have found that this derivative diverges
logarithmically as T→0. In particular, we have demonstrated
analytically that for the bare Coulomb interaction one has

�d�k

dk
�

k=k�

�
e2

��

�k�

2Ek�

�ln T� as T → 0, �17�

where k� is the zero crossing point at T=0 as k→k�

�d�k

dk
�

T=0
�

e2

��

�k�

2Ek�

ln�k − k�� as k → k�, �18�

which we have also checked numerically �Fig. 3�. This di-
vergence is due to the simultaneous presence of the long-
range Coulomb interaction, which is singular at q=0, and the
discontinuity of the Fermi function at T=0. Finite tempera-
ture and/or screening effects, smear out these singularities
thus removing the divergence. The presence of this diver-
gence at T=0 was overlooked in the previous mean-field
study of the imbalanced electron-hole bilayer system.53 As a
matter of fact, making this divergence emerge from the nu-
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FIG. 2. �Color online� Gap function and quasiparticle energies
with screened Coulomb interactions for me /mh=0.07 /0.30 and d
=aB. The upper panel shows a Sarma-2 phase at rs=2.5 and �
=0.2 with excess electrons. The lower panel shows a Sarma-1 phase
at rs=5 and �=0.5 with excess electrons. Occupation numbers are
shown on the right. The gap function has less variation and the
divergence in the derivative at the zero crossings disappears.
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merical calculation requires the achievement of very low
temperatures in the calculations and an extreme precision in
the numerical integration.

The presence of this divergence is particularly meaningful
for the analysis of the local stability of the Sarma phase at
strictly T=0. The diverging derivative makes, in fact, the
negative contribution to �s vanish, thus implying that for the
unscreened Coulomb interaction the Sarma phase is always
locally stable at T=0. This result is interesting as a matter of
principle, as it offers an “extreme” example, where the argu-
ment by Forbes et al.22 that mass ratio and momentum struc-
ture of the interactions should favor the stability of Sarma
phase is completely effective. On the other hand we expect it
to have few practical consequences, since the stability of the
Sarma phase induced by this divergence is very fragile with
respect to finite temperature and/or screening effects. As Fig.
3 clearly shows, quite small temperatures suffice to smear
out the divergence in the derivative. Alternatively, the simple
screened interaction makes the divergence to disappear even
at T=0, as also shown in Fig. 3. As a result, in the presence
of screening, the Sarma phase will indeed be locally unstable
in certain regions of the rs-� plane, as discussed in the next
section.

The mechanical stability of the system with respect to
phase separation requires the compressibility matrix ��i /�Nj
to be positive definite. We have therefore calculated the com-
pressibility matrix across our phase diagram to check also
this stability. When the intralayer Coulomb interaction is ne-
glected, the compressibility matrix develops negative eigen-
values across most of our phase diagram �restricting the
stable region only to small values of rs� in agreement with
the findings of the recent work by Yamashita et al.57 How-
ever, as it was already argued in Ref. 53, this apparent domi-
nant instability toward phase separation is an artifact occur-
ring when the intralayer Coulomb repulsion is artificially
excluded from the calculation. It should therefore not be
taken seriously. In particular, we have verified explicitly that
in our calculations with Coulomb intralayer repulsion, the
Hartree term, which increases linearly with the distance dG
between the metallic gates and the electron/hole layers,
washes out completely phase separation from our phase dia-
gram of Fig. 4 already for distances dG on the order of
5aB–10aB, well below the typical gate-to-layer distances in
current devices. We thus conclude that, contrary to what hap-
pens in cold atom systems, phase separation is not an issue in
electron-hole bilayer systems.

D. Phase diagram at d=aB

In this section we present the phase diagram resulting
from the comparison of the energies of the Sarma and normal
phases and from the stability analysis discussed in the previ-
ous section. We set the interlayer separation equal to one
effective �excitonic� Bohr radius d=aB. To make contact
with previous literature, we present in Fig. 4 the phase dia-
gram for progressively refined approximations corresponding
to the inclusion in the calculations of: �i� bare interlayer in-
teractions only, �ii� bare interlayer and intralayer interactions,
�iii� screened interlayer interactions only, and �iv� screened
interlayer and intralayer interactions.

For bare interactions, the superfluid density is always
positive and the Sarma phase is “locally” stable, due to the
mechanism explained in Sec. III C. Therefore, in the top
panel of Fig. 4 we do not show any FFLO phase, but our
calculations do not rule out the possibility of a first-order
transition to an FFLO phase with a finite FFLO modulation
momentum q as found in Ref. 57. Two topologically distinct
Sarma phases, Sarma-1 with one Fermi surface and Sarma-2
with two Fermi surfaces, are present in the phase diagrams.
The effect of the intralayer repulsive interactions is to favor
the normal phase with respect to the condensed phases, thus
shifting to higher values of rs the boundary between normal
and condensed phases �right panels�. The two bottom panels
of Fig. 4 presents the phase diagram when the gate screening
is taken into account. With interlayer interactions only, the
Sarma phase becomes unstable for a large portion of the
phase diagram, especially with excess holes, i.e., �
0 �bot-
tom left panel�. There is no stable S2 phase in this case.
Switching on the intralayer interactions reduces the space
occupied by the FFLO phase in our phase diagram and re-
stores the S2 phase in some region of the phase diagram.
This result is physically quite sensible, as the FFLO modu-
lations of the gap parameter should be unavoidably accom-
panied by some modulations of the density in real space. In
the presence of the Coulomb intralayer repulsion such den-
sity modulations are energetically expensive, thus hindering
the FFLO phase with respect to the Sarma phase.58

A quite rich phase diagram is therefore obtained when
both intralayer and screening effects are present. The pres-
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lines. A negative superfluid mass density showing a local instability
is assumed to be toward an FFLO phase. S1, S2, and FFLO bound-
aries are shown with green dashed lines. The four panels correspond
to calculations including: bare interlayer interactions only �upper
left�, bare intralayer and interlayer interactions �upper right�, gate
screened interlayer interactions only �lower left� and gate screened
intralayer and interlayer interactions �lower right�. The �=0 line is
special in the phase diagram and corresponds to the BCS state with
equal populations, which is always stable.
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ence of locally stable Sarma phases confirms the expectation
that isotropic translationally invariant gapless superfluid
states can be stable with momentum-dependent interaction.22

We note in this context that in recent work, Sarma phases
were found to be stable also in two-dimensional, two-band
neutral Fermi systems.38,41

IV. SUMMARY

We have studied a bilayer system of electron and hole
layers spatially separated by an insulating barrier, where the
electron and hole densities can be controlled independently
and have analyzed s-wave pairing between electrons and
holes as a function of average density and population differ-
ence using mean-field theory. By solving the relevant
energy-gap equations we have compared the energy of the
condensed phase called the Sarma phase with that of the
normal state which is the sum of the electron and hole Fermi-
liquid energy described by the Hartree-Fock solution. We
have included both interlayer and intralayer interactions gen-
eralizing earlier work which did not include in-plane
interactions.53 In this way the phase boundary for the ground
state is established in the density-population polarization
�rs-�� plane. The “local” stability of the Sarma phase was
checked by calculating the superfluid mass density, whereas
the stability with respect to phase separation was assessed by
calculating the compressibility matrix. We have found that
with bare Coulomb interactions the Sarma phase is always
locally stable due to a peculiar momentum structure of the
gap function originating from the singular infrared behavior
of the Coulomb potential, and the simultaneous presence of a
sharp Fermi surface at zero temperature.

Employing a simple model of screening which introduces
an infrared cutoff in the Coulomb interaction, we have found
that some regions in the phase space become unstable. We
interpret this as an instability toward an FFLO phase. To-
gether with intralayer interactions, the phase diagram in the
crossover regime from the weakly interacting high-density
BCS limit to the strongly interacting BEC of dilute excitons
has room for various phases. The topologically different S1
and S2 Sarma phases and FFLO are present with the inclu-
sion of screening and intralayer interactions. On the other
hand, without any screening there is no instability toward
FFLO and turning-off intralayer interactions the phase dia-
gram does not show an S2 state. Currently, the experimental
situation allows these systems to be realized.51,52,59 Quanti-
tative comparison would require a more realistic model of
screening, accounting for the condensed phase and finite
width of the quantum wells, incorporating the disorder ef-
fects, and inclusion of spin degrees of freedom which may
enter nontrivially when there are spin-dependent interactions
such as spin-orbit coupling. With the renewed mean-field
phase diagram at hand, it would also be interesting to per-
form QMC simulations to probe the predicted phases.
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