690 research outputs found
LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11
In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor LHX2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that LHX2 binds to the nucleosome remodeling and histone deacetylase histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When LHX2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of LHX2 produces an increase, and overexpression of LHX2 causes a decrease, in layer 5 Fezf2 and CTIP2-expressing neurons. Our results provide mechanistic insight into how LHX2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity
Simultaneous transcriptional profiling of bacteria and their host cells
We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction. © 2013 Humphrys et al
Response of a Li-glass/multi-anode photomultiplier detector to collimated thermal-neutron beams
The response of a position-sensitive Li-glass scintillator detector being
developed for thermal-neutron detection with 6 mm position resolution has been
investigated using collimated beams of thermal neutrons. The detector was moved
perpendicularly through the neutron beams in 0.5 to 1.0 mm horizontal and
vertical steps. Scintillation was detected in an 8 X 8 pixel multi-anode
photomultiplier tube on an event-by-event basis. In general, several pixels
registered large signals at each neutron-beam location. The number of pixels
registering signal above a set threshold was investigated, with the
maximization of the single-hit efficiency over the largest possible area of the
detector as the primary goal. At a threshold of ~50% of the mean of the
full-deposition peak, ~80% of the events were registered in a single pixel,
resulting in an effective position resolution of ~5 mm in X and Y. Lower
thresholds generally resulted in events demonstrating higher pixel
multiplicities, but these events could also be localized with ~5 mm position
resolution.Comment: 23 pages, 8 figure
Automatic Compilation from High-Level Biologically-Oriented Programming Language to Genetic Regulatory Networks
Background
The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry.
Methodology/Principal Findings
To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks.
Conclusions/Significance
Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.National Institutes of Health (U.S.) (Grant # 7R01GM74712-5)United States. Defense Advanced Research Projects Agency (contract HR0011-10-C-0168)National Science Foundation (U.S.) (NSF CAREER award 0968682)BBN Technologie
Redox Modulation at Work: Natural Phytoprotective Polysulfanes From Alliums Based on Redox-Active Sulfur
Purpose of review: This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. Recent findings: The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5–40 mg/L and for anticancer 20–100 μM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. Summary: Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells
Morphological docking of secretory vesicles
Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses
Synthetic protein-binding DNA sponge as a tool to tune gene expression and mitigate protein toxicity
Malnutrition in patients treated for oral or oropharyngeal cancer—prevalence and relationship with oral symptoms: an explorative study
This study aimed to assess prevalence of malnutrition after treatment for oral/oropharyngeal cancer and to explore how oral symptoms relate to malnutrition after treatment. In this cross-sectional study, malnutrition (weight loss a parts per thousand yenaEuro parts per thousand 10% in 6 months or a parts per thousand yen5% in 1 month), oral symptoms (EORTC QLQ-H&N35 questionnaire and additional questions to assess chewing problems), dental status, trismus and dietary intake were assessed in 116 adult patients treated for oral/oropharyngeal cancer. Prevalence of malnutrition was 16% (95%CI: 10% to 23%). Prevalence of malnutrition in the period 0-3 months after treatment was significantly higher (25%) than in the periods > 3-12 months (13%) and > 12-36 months after treatment (3%, p = 0.008). Logistic multivariate regression analysis revealed that swallowing problems (p = 0.021) and insufficient protein intake were significantly related to malnutrition (p = 0.016). In conclusion, malnutrition is a considerable problem in patients treated for oral/oropharyngeal cancer, shortly after treatment. Of all oral symptoms, only swallowing problems were significantly related to malnutrition in the period after treatment for oral/oropharyngeal cancer
Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss
Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype
Surrogacy tourism: the ethical and legal challenges
Although surrogacy seemed to have been practised since ancient times, its resurgence in the contemporary era has been nothing short of phenomenal. With advances made in reproductive technology, it is now possible to fertilise eggs and sperms in laboratories and have the embryo transferred into the womb of a surrogate mother for gestation. Through a combination of push and pull factors, this possibility of gestational surrogacy has led to the meteoric rise of cross-border surrogacy. This paper seeks to highlight the ethical and legal challenges associated with the practice, and calls for better legal oversight at international level
- …