1,065 research outputs found

    Spin-based quantum gating with semiconductor quantum dots by bichromatic radiation method

    Full text link
    A potential scheme is proposed for realizing a two-qubit quantum gate in semiconductor quantum dots. Information is encoded in the spin degrees of freedom of one excess conduction electron of each quantum dot. We propose to use two lasers, radiation two neighboring QDs, and tuned to blue detuning with respect to the resonant frequencies of individual excitons. The two-qubit phase gate can be achieved by means of both Pauli-blocking effect and dipole-dipole coupling between intermediate excitonic states.Comment: Europhysics Letters 66 (2004) 1

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Technology for the Future: In-Space Technology Experiments Program, part 1

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments

    Relaminarisation of Re_τ=100 channel flow with globally stabilising linear feedback control

    Get PDF
    The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller’s estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Re_τ = 100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl’s theory of sheared turbulence

    Relaminarisation of Re_{\tau} = 100 channel flow with globally stabilising linear feedback control

    Full text link
    The problems of nonlinearity and high dimension have so far prevented a complete solution of the control of turbulent flow. Addressing the problem of nonlinearity, we propose a flow control strategy which ensures that the energy of any perturbation to the target profile decays monotonically. The controller's estimate of the flow state is similarly guaranteed to converge to the true value. We present a one-time off-line synthesis procedure, which generalises to accommodate more restrictive actuation and sensing arrangements, with conditions for existence for the controller given in this case. The control is tested in turbulent channel flow (Reτ=100Re_\tau=100) using full-domain sensing and actuation on the wall-normal velocity. Concentrated at the point of maximum inflection in the mean profile, the control directly counters the supply of turbulence energy arising from the interaction of the wall-normal perturbations with the flow shear. It is found that the control is only required for the larger-scale motions, specifically those above the scale of the mean streak spacing. Minimal control effort is required once laminar flow is achieved. The response of the near-wall flow is examined in detail, with particular emphasis on the pressure and wall-normal velocity fields, in the context of Landahl's theory of sheared turbulence

    Thin-Film Metamaterials called Sculptured Thin Films

    Full text link
    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009, Sibiu, Romania

    Theory of Fast Quantum Control of Exciton Dynamics in Semiconductor Quantum Dots

    Full text link
    Optical techniques for the quantum control of the dynamics of multiexciton states in a semiconductor quantum dot are explored in theory. Composite bichromatic phase-locked pulses are shown to reduce the time of elementary quantum operations on excitons and biexcitons by an order of magnitude or more. Analytic and numerical methods of designing the pulse sequences are investigated. Fidelity of the operation is used to gauge its quality. A modified Quantum Fourier Transform algorithm is constructed with only Rabi rotations and is shown to reduce the number of operations. Application of the designed pulses to the algorithm is tested by a numerical simulation.Comment: 11 pages,5 figure

    Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data

    Get PDF
    We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination

    Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment

    Get PDF
    International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments
    • 

    corecore