68 research outputs found

    Patch Burn‐Grazing: An Annotated Bibliography

    Get PDF
    Patch burn‐grazing is a rangeland management strategy that exploits the attraction of grazing animals to recently burned areas in order to achieve management objectives. When fire is applied to a landscape in a patchy manner, leaving some patches unburned, the resulting grazing animal activity, forage utilization, and animal impact are patchily distributed within that landscape as well. Areas that have been recently burned tend to be characterized by the highest levels of grazing animal activity while areas that have gone the longest without burning tend to be characterized by the lowest levels of grazing animal activity. This can be advantageous for a multitude of reasons related to wildlife conservation, livestock productivity, herbaceous fuel management, invasive species management, and woody plant control. The following annotated bibliography lists resources about patch burn‐grazing in North America. The bibliography includes all citations known by us of research conducted within the context of patch burn‐grazing as an explicit management strategy. Included in the bibliography are papers representing original research, review and synthesis papers, theses (10), and a dissertation. In instances where the research in a thesis or dissertation was subsequently published, we include the citation for the published article(s) but not for the original thesis or dissertation. We did not include reports or extension publications although many valuable publications of this type exist on this topic. For additional resources such as extension publications, look at the Great Plains Fire Science Exchange website or university extension websites in the region

    The interaction of PP1 with BRCA1 and analysis of their expression in breast tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breast cancer susceptibility gene, <it>BRCA1</it>, is implicated in multiple cellular processes including DNA repair, the transactivation of genes, and the ubiquitination of proteins; however its precise functions remain to be fully understood. Identification and characterization of BRCA1 protein interactions may help to further elucidate the function and regulation of BRCA1. Additionally, detection of changes in the expression levels of <it>BRCA1 </it>and its interacting proteins in primary human breast tumors may further illuminate their role in the development of breast cancer.</p> <p>Methods</p> <p>We performed a yeast two-hybrid study to identify proteins that interact with exon11 of BRCA1 and identified Protein Phosphatase 1ÎČ (PP1ÎČ), an isoform of the serine threonine phosphatase, PP1. GST-pull down and co-immunoprecipitation assays were performed to further characterize this interaction. Additionally, Real-Time PCR was utilized to determine the expression of <it>BRCA1</it>, <it>PP1</it>α, ÎČ and Îł in primary human breast tumors and normal breast tissue to identify alterations in the expression of these genes in breast cancer.</p> <p>Results</p> <p>PP1 and BRCA1 co-immunoprecipitate and the region within BRCA1 as well as the specific PP1 interacting domain mediating this interaction were identified. Following mRNA expression analysis, we identified low levels of <it>BRCA1 </it>and variable levels of <it>PP1</it>α and ÎČ in primary sporadic human breast tumors. Furthermore, BRCA1, <it>PP1</it>ÎČ and PP1Îł were significantly higher in normal tissue specimens (BRCA1 p = 0.01, <it>PP1</it>ÎČ: p = 0.03, <it>PP1</it>Îł, p = 1.9 × 10<sup>-6</sup>) compared to sporadic breast tumor samples. Interestingly, we also identified that ER negative tumors are associated with low levels of <it>PP1</it>α expression.</p> <p>Conclusion</p> <p>The identification and characterization of the interaction of BRCA1 with PP1 and detection of changes in the expression of <it>PP1 </it>and genes encoding other BRCA1 associated proteins identifies important genetic pathways that may be significant to breast tumorigenesis. Alterations in the expression of genes, particularly phosphatases that operate in association with BRCA1, could negatively affect the function of BRCA1 or BRCA1 associated proteins, contributing to the development of breast cancer.</p

    Structural and functional insight into human O-GlcNAcase.

    Get PDF
    O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value

    Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    Get PDF
    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium

    Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells

    Get PDF
    Little is known about mammalian preRC stoichiometry, the number of preRCs on chromosomes, and how this relates to replicon size and usage. We show here that, on average, each 100-kb of the mammalian genome contains a preRC composed of approximately one ORC hexamer, 4–5 MCM hexamers, and 2 Cdc6. Relative to these subunits, ∌0.35 total molecules of the pre-Initiation Complex factor Cdc45 are present. Thus, based on ORC availability, somatic cells contain ∌70,000 preRCs of this average total stoichiometry, although subunits may not be juxtaposed with each other. Except for ORC, the chromatin-bound complement of preRC subunits is even lower. Cdc45 is present at very low levels relative to the preRC subunits, but is highly stable, and the same limited number of stable Cdc45 molecules are present from the beginning of S-phase to its completion. Efforts to artificially increase Cdc45 levels through ectopic expression block cell growth. However, microinjection of excess purified Cdc45 into S-phase nuclei activates additional replication foci by three-fold, indicating that Cdc45 functions to activate dormant preRCs and is rate-limiting for somatic replicon usage. Paradoxically, although Cdc45 colocalizes in vivo with some MCM sites and is rate-limiting for DNA replication to occur, neither Cdc45 nor MCMs colocalize with active replication sites. Embryonic metazoan chromatin consists of small replicons that are used efficiently via an excess of preRC subunits. In contrast, somatic mammalian cells contain a low density of preRCs, each containing only a few MCMs that compete for limiting amounts of Cdc45. This provides a molecular explanation why, relative to embryonic replicon dynamics, somatic replicons are, on average, larger and origin efficiency tends to be lower. The stable, continuous, and rate-limiting nature of Cdc45 suggests that Cdc45 contributes to the staggering of replicon usage throughout S-phase, and that replicon activation requires reutilization of existing Cdc45 during S-phase

    Mammalian MCM Loading in Late-G1 Coincides with Rb Hyperphosphorylation and the Transition to Post-Transcriptional Control of Progression into S-Phase

    Get PDF
    BACKGROUND: Control of the onset of DNA synthesis in mammalian cells requires the coordinated assembly and activation of the pre-Replication Complex. In order to understand the regulatory events controlling preRC dynamics, we have investigated how the timing of preRC assembly relates temporally to other biochemical events governing progress into S-phase. METHODOLOGY/PRINCIPAL FINDING: In murine and Chinese hamster (CHO) cells released from quiescence, the loading of the replicative MCM helicase onto chromatin occurs in the final 3-4 hrs of G(1). Cdc45 and PCNA, both of which are required for G(1)-S transit, bind to chromatin at the G(1)-S transition or even earlier in G(1), when MCMs load. An RNA polymerase II inhibitor (DRB) was added to synchronized murine keratinocytes to show that they are no longer dependent on new mRNA synthesis 3-4 hrs prior to S-phase entry, which is also true for CHO and human cells. Further, CHO cells can progress into S-phase on time, and complete S-phase, under conditions where new mRNA synthesis is significantly compromised, and such mRNA suppression causes no adverse effects on preRC dynamics prior to, or during, S-phase progression. Even more intriguing, hyperphosphorylation of Rb coincides with the start of MCM loading and, paradoxically, with the time in late-G(1) when de novo mRNA synthesis is no longer rate limiting for progression into S-phase. CONCLUSIONS/SIGNIFICANCE: MCM, Cdc45, and PCNA loading, and the subsequent transit through G(1)-S, do not depend on concurrent new mRNA synthesis. These results indicate that mammalian cells pass through a distinct transition in late-G(1) at which time Rb becomes hyperphosphorylated and MCM loading commences, but that after this transition the control of MCM, Cdc45, and PCNA loading and the onset of DNA replication are regulated at the post-transcriptional level

    Circulating microRNAs as novel biomarkers for diabetes mellitus.

    Get PDF
    Diabetes mellitus is characterized by insulin secretion from pancreatic ÎČ cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of ÎČ cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect ÎČ-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications

    Bibliometric Analysis of Academic Journal Recommendations and Requirements for Surgical and Anesthesiologic Adverse Events Reporting

    Get PDF
    BACKGROUND: Standards for reporting surgical adverse events (AEs) vary widely within the scientific literature. Failure to adequately capture AEs hinders efforts to measure the safety of healthcare delivery and improve the quality of care. The aim of the present study is to assess the prevalence and typology of perioperative AE reporting guidelines among surgery and anesthesiology journals. MATERIALS AND METHODS: In November 2021, three independent reviewers queried journal lists from the SCImago Journal & Country Rank (SJR) portal (www.scimagojr.com), a bibliometric indicator database for surgery and anesthesiology academic journals. Journal characteristics were summarized using SCImago, a bibliometric indicator database extracted from Scopus journal data. Quartile 1 (Q1) was considered the top quartile and Q4 bottom quartile based on the journal impact factor. Journal author guidelines were collected to determine whether AE reporting recommendations were included and, if so, the preferred reporting procedures. RESULTS: Of 1409 journals queried, 655 (46.5%) recommended surgical AE reporting. Journals most likely to recommend AE reporting were: by category surgery (59.1%), urology (53.3%), and anesthesia (52.3%); in top SJR quartiles (i.e. more influential); by region, based in Western Europe (49.8%), North America (49.3%), and the Middle East (48.3%). CONCLUSIONS: Surgery and anesthesiology journals do not consistently require or provide recommendations on perioperative AE reporting. Journal guidelines regarding AE reporting should be standardized and are needed to improve the quality of surgical AE reporting with the ultimate goal of improving patient morbidity and mortality

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    • 

    corecore